Share
Explore BrainMass

Electrical Engineering

Insertion Loss of T-Network

Given the transmission matrix, calculate the insertion loss of the T-network. Please refer to the attachment for the matrix and the network diagram. I have provided the formula I am working from but I normally prefer a completely different set of workings to provide a good base for comparison/improvement to my own methods.

Phase change down the transmission line and the input impedance to the line

Please show as much working as possible and comment where possible. (a) A transmission line has a length, l, of 0.4 lambda. Determine the phase change that occurs down the line. (b) A 50 Ohm lossless transmission line of length 0.4 lambda is terminated in a load of (40 + 30j) Ohm. Determine, using the equation given below

Two-Port Network, Z-Parameter Matrix

Please see the attachment for mentioned network and circuit diagrams. 1. Find the z-parameters of the two-port network below. 2. In the circuit below, the two-port network TPN can be represented by the z-parameters shown. a. Represent the complete circuit by a z-parameter matrix. b. State if the complete circuit is rec

Design a Variable Frequency Divider, and a Mod-31 LFSR Counter using AHDL.

Activity 3: (Problem 14A.6) Design a variable frequency divider using AHDL. The frequency divider should divide the input frequency by one of four different factors. The divide-by-factor is controlled by two mode controls, as described by the following function table. The mode controls are used to change the modulus of the

Cantilever and Strain Gauge

Please refer to the attached pdf file for complete question with mentioned figures and tables. 1. The cantilever and strain gauge act as the transducer in a force-measuring instrumentation system as shown in FIGURE 2. An applied force FT (the true force) is the input to the system and the output is FM (the measured force). Id

Electrical signal feedback, Public Address system, Howling

Please answer the following questions. (a) It is found that if a microphone is brought into the proximity of a loudspeaker on a public address (P.A.) system, the system will `howl'. Carefully explain, making reference to feedback theory, why this is so. (b) Suggest two actions that could be adopted to remedy the howling. (c

Linear time-invariant continuous-time system

1. Is the linear time-invariant continuous-time system with the impulse response h(t) = sin 2t for t ≥ 0 BIBO is stable? Explain. 2. Determine if the linear time-invariant continuous-time system defined by: is stable, marginally stable, unstable, or marginally unstable. Show work. 3. Compute the steady-state

Laplace Transformations and Inverse Laplace Transformations

1. Find the Laplace transform of 6 cos t + 2e −3t . 2. Find the Laplace transform of 2 cosh t + 2t 3. 3. Find the Laplace transform of 2te −3t. 4. Find the inverse Laplace transform of s/s+2. 5. Find the inverse Laplace transform of 1/s+5. 6. Find the inverse Laplace transform of 1/( s + 5 ) ( s 2 + 1). 7.

Op-Amps and ICs

Please see the attachment for referred figures. 1. The midrange open gain of a certain op-amp is 100,000. If the open loop critical frequency is 75 Hz, what is the open loop gain at 1 KHz? 2. A certain op-amp has three internal amplifier stages with the following gains and critical frequencies: A1 = 50 dB at f1 = 1000Hz, A

Computing DTFT

Having problems working out DTFT properly. Attached is 5 problems. Request assistance with these and if possible short narrative to each step to help me understand better. 1. Compute the DTFT of the discrete-time signal shown in the Figure below. 2. For a discrete-time signal x[n] with the DTFT where b is an arbi

The Laplace Transform and the Transfer Function Representation

1. Calculate the Laplace transform of exp(-10t) x u(t) 2. Calculate the convolution of exp(-t) and sin(t) using (a) the Laplace transform (b) direct integration 3. Compute the inverse transform of (3s^2 + 4s + 1) / (s^4 + 3s^3 +3s^2+2s) 4. Use Laplace transform to calculate the solution to the ODE y"+6y'+8y=u(t) y

Sample Question: Control Systems

See the attachment. 1. What is the phase margin and gain margin? A system has a loop function: A) P.M.= 32.5 degrees and G.M.=16.47 dB. B) P.M.= 30.2 degrees and G.M.=15.67 dB. C) P.M.= 31.8 degrees and G.M.=16.57 dB. D) P.M.= 32.3 degrees and G.M.=16.67 dB. 2. The loop function of a unity feedback system is:

Transmission schemes and Time sequence diagrams

. Calculate the overhead associated with the following transmission schemes: a. Asynchronous transmission; 8 data bits, 1 start bit, 1 stop bit b. Asynchronous transmission; 7 data bits, 1 start bit, 1 stop bit c. Asynchronous transmission; 7 data bits, 2 start bits, 1 stop bit, 4 bit FCS d. Synchronous transmission; 100

Control Systems (Frequency Domain)

Problem 2: A robot tennis player is shown in the figure above. The goal of the control system is to attain the best step response while attaining a high Kv. 1. Why is it desirable to attain a good step response and a high Kv? 2. Select Kv1=0.325 and Kv2=0.45. Note K does not equal Kv. Determine the phase margin, gain ma

Bode Plots for Loop Functions

1. The Bode plot for the loop function of a unity feedback system is shown below: Determine the gain K which must be added to the system so that a phase margin of 45 degrees is achieved. K=3.5 K=1.4 K=0.17 K=0.83 2. The loop function for a unity feedback system is: G(s) = 2K/s(s+1)2.

Control Systems Comparison

Problem 1: Using the riocus function, obtain the root locus for the following transfer function shown in Figure 1 when 0 < k < ∞ and G(s) is defined as the following: G(s) = (s5+4s4+ 6s3+8s2+6s+4)/( s6+2 s5+2s4+s3+s2+10 -1) 1. Comment on the stability of the system as k varies. Figure 2 Problem 2: Consider

Matlab to determine closed-loop transfer functions

Problem 1: A unity negative feedback system has the open-loop transfer function. G(s) = (s + 1)/(s3 + 4s2 + 6s + 10) 1. Using MATLAB, determine the closed-loop transfer function. 2. Using MATLAB, find the roots of the characteristic equation. 3. Is the system stable, marginally stable, or unstable? 4. Use ltiview to d

Control System MATLAB Script

Please see the attached file for a diagram and help with the following problems. Consider the closed-loop control system shown above. 1. Develop a MATLAB script to assist in the search for a value of k so that the percent overshoot to a unit step input is greater than 1%, but less than 10%. The script should compute the c

Design of a synchronous machine

Please see the attachment. Design a clocked synchronous state machine with state/output table shown in the file, using D Flip-flops Use state variables Q0,Q1,Q2 with state assignment A=000 B=001 C=010 D=011 E=100 F=101 Use Don't care to minimize the circuit where appropriate. Develop excitation and output equations. Draw t