Explore BrainMass


Sound Waves

Consider the wave equation when the solution s admits spherical symmetry, ie, s(t,x,y,z)=v(t,r), where ... , the wave equation becomes: (1) making the substitution for some twice differentiable function h, show that (1) becomes hence, show that the general solution reads for any twice differentiable functions f

Trigonometric Equations : Solution and Area of Triangle

1. Find all the solutions of the equation 3sin20(degrees) = cos2x(degrees) in the range 0(degrees) is less then or equal to x(degrees) which is less than or equal to 180(degrees). 2. A triangle has sides A-C =3cm A-B = 5 cm B-C = 4 cm Find the area of

Function indicated domain of definition

The problems are from complex variable class. Please specify the terms that you use if necessary and explain each step of your solution. If there is anything unclear in the problem, please tell me. Thank you very much. 4. Use the given theorem to show that each of these functions is differentiable in the indicated domain of

Trigonometry : Word Problems

Q1. A glass crystal sculpture is made in the shape of a regular octagonal prism with 10 cm sides. Each of the lateral faces is square. To avoid breakage in shipment, the piece is padded with plastic foam beads when it is packed in its square-based rectangular box. The layer of beads must be at least 1 cm thick on all sides of


A handicap ramp is 5.26 meters above the ground. What will the length of the ramp if it makes an angle of 23 degrees with the floor?

Measure Height of Mountain : Angle of Elevation

To measure the height of a mountain a surveyor takes two sightings of the peak at a distance of 900 meters apart on a direct line to the mountain (see attached picture). The first observation results in an angle of elevation of 47 degrees, whereas the second results an angle of elevation of 35 degrees. If the transit is 2 meters

Applications of Trigonometry and Vectors

Please see the attached file for the fully formatted problems. 1. Find the indicated part of each triangle ABC. C = 118°, b = 130km, a = 75km; find c The correct answer to this problem is 180 km how did they come up with that answer? 2. Height of a Balloon: The angles of elevation of a balloon from two points A and B on


Find the exact value, given that sin A = -4/5 with A in quadrant IV tan 2A Which is the correct answer? - 7/24 24/7 - 24/7 7/24


Solve the equation for solutions in the interval [0, 360). tan 4x = 0 Which is the correct answer? x = 33, 57, 147, 237, 327 x = 0, 90, 180, 270 x = 0, 45, 90, 135, 180, 225, 270 x = 0, 45, 90, 135, 180, 225, 270, 315

Trigonometric Identities

If you would please give me each step to solve these problems so I can get a better understanding how to solve these types of problems would be very helpful. Thanks. Graph each expression and use the graph to conjecture an identity. Then verify your conjecture algebraically. 1. sec x - sin x tan x Verify that each equat

Wave Equations : Comparison Between Circular and Square Vibrating Membranes

Please see the attached file for the fully formatted problems. Consider a circular membrane of radius a and a square membrane Assume the two membranes (i) have the same area. .... (ii) obey the same wave equation... (iii) Have the same boundary conditions phi = 0 at their boundaries. A) TABULATE (i) the 3 lowest frequen

Volume of a Hypersphere : n-Tuple Integral

Please do #4. Please see the attached file for full problem description. In this project, we find formulas for the enclosed by a hypersphere in n?dimensional spaces 1 Use a double integral, and trigonometric substitution, together with Formula 64 in the Table of Integrals, to find the area of a circle with radius r 2 U

Using triangle ABC, show that form is able to find side lengths.

Let ABC be a triangle. Prove that (cos(A/2))^x, (cos(B/2))^x, and (cos(C/2))^x are the lengths of a triangle for any x greater than or equal to 0. From what I have found in my books, it is impossible to solve for side lengths of a triangle using AAA b/c there is no formula to do so. It is possible to find similar triangles

Circumscribable Quadrilateral and Finding Lengths

In the attached figure, the quadrilateral ABCD has the following lengths of sides and diagonals: DC=7, CB=8, BA=13, AD=13, AC=15, and BD=13. 1. Verify that quadrilateral ABCD is circumscribable 2. Find the remaining lengths of DE, BE, AE, and CE. Although it appears there is a right angle, it is not labeled as though it

Trigonometric Points in terms of Radians : Transformations

In terms of radians and X, what would be the specifications of the anlges for trigonometric points which result from the following transformations of the trigonometric point P(X)? (Work these out on a diagram of the unit circle) 1) A reflection y = x followed by a rotation through pi 2) A reflection in y = -x 3) A refle

Pythagoras Theorem, Cosine and Sine Formulas

1) A herring gull was ringed at Llyn Trawsfynydd Gwynedd (grid reference SH 700360) and was retapped near Criccieth, Gwynedd ( grid reference SH 500380). The ringing report states the Distance as 20km and the Direction as 276 degrees. (a) Use the grid references and trigonometry to check that the map bearing of Criccieth from

Writing a trigonometric function for a bouncing ball.

Write a trigonometric function for a ball dropped from a distance of 5ft from the floor. Let the x-axis represent the time after the ball was dropped and the y axis represent the height in feet. Address these issues: 1. Explain the process you used to find the function. Include all math steps. Why did you select this particular

Angle of Depression - Trigonometry

The foot, F, of a hill and the base B, of a vertical tower TB, 27 metres tall, are on the same horizontal plane. From the top, T, of the tower, the angle of depression of F is 32.7 degrees. P is a point on the hill 27.5 metres away from F along the line of greatest slope. T, B, F and P all lie in the same vertical plane. The ang