Explore BrainMass


Using triangle ABC, show that form is able to find side lengths.

Let ABC be a triangle. Prove that (cos(A/2))^x, (cos(B/2))^x, and (cos(C/2))^x are the lengths of a triangle for any x greater than or equal to 0. From what I have found in my books, it is impossible to solve for side lengths of a triangle using AAA b/c there is no formula to do so. It is possible to find similar triangles

Circumscribable Quadrilateral and Finding Lengths

In the attached figure, the quadrilateral ABCD has the following lengths of sides and diagonals: DC=7, CB=8, BA=13, AD=13, AC=15, and BD=13. 1. Verify that quadrilateral ABCD is circumscribable 2. Find the remaining lengths of DE, BE, AE, and CE. Although it appears there is a right angle, it is not labeled as though it

Trigonometric Points in terms of Radians : Transformations

In terms of radians and X, what would be the specifications of the anlges for trigonometric points which result from the following transformations of the trigonometric point P(X)? (Work these out on a diagram of the unit circle) 1) A reflection y = x followed by a rotation through pi 2) A reflection in y = -x 3) A refle

Pythagoras Theorem, Cosine and Sine Formulas

1) A herring gull was ringed at Llyn Trawsfynydd Gwynedd (grid reference SH 700360) and was retapped near Criccieth, Gwynedd ( grid reference SH 500380). The ringing report states the Distance as 20km and the Direction as 276 degrees. (a) Use the grid references and trigonometry to check that the map bearing of Criccieth from

Writing a trigonometric function for a bouncing ball.

Write a trigonometric function for a ball dropped from a distance of 5ft from the floor. Let the x-axis represent the time after the ball was dropped and the y axis represent the height in feet. Address these issues: 1. Explain the process you used to find the function. Include all math steps. Why did you select this particular

Angle of Depression - Trigonometry

The foot, F, of a hill and the base B, of a vertical tower TB, 27 metres tall, are on the same horizontal plane. From the top, T, of the tower, the angle of depression of F is 32.7 degrees. P is a point on the hill 27.5 metres away from F along the line of greatest slope. T, B, F and P all lie in the same vertical plane. The ang