Explore BrainMass



Specify whether the following statements are true or false and justify your answer. a) Suppose we have an optimal basic feasible solution for an LP in standard form. If we increase the cost of a non-basic variable xn, the current solution will always remain optimal. b) Suppose we have an optimal basic feasible solution for

Optimization Problems/ Newtons Method

--- 4) Find a positive number such that the sum of the number and its reciprocal is as small as possible 6) Find the dimensions of a rectangle with area 1000m^2 whose perimeter is as small as possible 10) A box with square base and open top must have a volume of 32,000cm^3. Find the dimensions of the box that minimize

Max/min/crit point values

(See attached file for full problem description) --- 1) Let F(x) = 2√X - X A. Find the local maximum and minimum values of F (x) in the interval [0,9] B. Determine whether F(x) satisfies al the conditions of MVT in the interval [0,9]. If f(x) satisfies the condition of MVT determine the 'c' value that satisfies th

Optimization Problem using Excel add-in Solver

This problem requires the use of Excel and the add-in, called Solver. The course is Excel-based and Solver is the optimization application used for all problems. This particular problem comes from Cliff Ragsdales's " Spreadsheet Modeling and Decisoin Analysis" and is case problem 6.3. The problem appears in this text box an

Proof of Dual using Farkas Lemma (PhD)

Hello, Could you please help me to prove this using Farkas Lemma? Well, I initially thought that I can use Farkas Lemma, but if it is impossible to use the lemma (though I do belive it will help), you might try other way. Thank you! --- (See attached file for full problem description)

Optimization Modeling In Excel (using Solver)

A marketing research group needs to contact at least 150 wives, 120 husbands, 100 single adult males, and 110 single adult females. It costs $2 to make a daytime call and (b/c of higher labor costs) $5 to make an evening call. Because of the limited staff, at most half of all phone calls can be evening calls. Determine how to

Interpreting LINDO output in linear programming optimization

Based on the attached file, please anwer: a. Give the complete optimal solution b. What constraints are binding? c. What would happen if the coefficient of X1 is increased by 6? d. What would happen if the right-hand-side value of constraint 1 decreased by 10? e. Which right-hand-side would you be most intereste

Interpreting LINDO Output in Linear Programming Optimization

Based on the attached file, please anwer: a. Give the complete optimal solution b. What constraints are binding? c. What is the dual price for the second constraint? d. Over what range can the objective function coefficient X2 vary before a new solution point becomes optimal? e. What would happen if the first constra

Applied differentation/optimization

It may be the mental picture that's confusing me, but I can't figure this one out: "A painting in an art gallery has height h and is hung so that its lower edge is a distance d above the eye of an observer. How far from the wall should the observer stand to get the best view? (In other words, where should the observer stand

Research Works for Satellite Route Optimization.

The Satellite Mission Scheduling problem with Dynamic Tasking (SMS-DT) involves scheduling tasks for a satellite, where new task requests can arrive at any time, non-deterministically, and must be scheduled in real-time. The schedule is a time ordered sequence of activities (scheduled tasks) to be performed by the payload of a s

Local and Absolute Maxima and Minima

Locate all relative (local) and absolute maxima and minima for the function: f(x) = x^2/x^2+1 over the entire graph (negative infinity, positive infinity).

Maximize demand

The area of a closed box is 200 square inches. If the box has a square base, find the length of the base that will maximize the volume.

Maximum and minimum

Consider the minimization of *see attached for equation* subject to the constraint of *see attached for equation* (a) Graph the contour point of with y-axis and x-axis between -2 and 6.(on my paper there is a dot (between point (3,3) Estimate where extrema values may occur and compute the function values correspondi

Critical Points, Max-Min values, inflection points

Given: y = f(x) = 3x4 + 4x3 Find: A. All critical points B. Max - Min Values C. Inflection points D. Where is f(x) concave up E. Where is f(x) concave down F. X and Y intercepts G. Where f(x) is increasing H. Where f(x) is decreasing I. Sketch the curve label