### Given the variation of voltage applied across a capacitor, to determine the current, charge, power and work done for the capacitor.

See attached file for full problem description. Please answer only question 1.2

Explore BrainMass

- Anthropology
- Art, Music, and Creative Writing
- Biology
- Business
- Chemistry
- Computer Science
- Drama, Film, and Mass Communication
- Earth Sciences
- Economics
- Education
- Engineering
- English Language and Literature
- Gender Studies
- Health Sciences
- History
- International Development
- Languages
- Law
- Mathematics
- Philosophy
- Physics
- Political Science
- Psychology
- Religious Studies
- Social Work
- Sociology
- Statistics

See attached file for full problem description. Please answer only question 1.2

Attached are shown several external components and a 12 volt 8-point common input module for a PLC. The inputs on the input module share a single common terminal (COM). The inputs are bipolar. The sensor has a PNP output. It is powered by Vcc = 12V and its output transistor is ON when the sensor is ON. Wire the components to the

Three parallel impedances in rectangular form as follows: 8.66+j5 ohm , 25+j0 ohm , 3.54+j2.54. A 240 volt 50 Hz supply Calculate overall power factor of the three loads.

I would like a circuit diagram of the output stages of an ECL gate. Also stating the logic function

Calculate S, complex power of a load (in rectangular form), given the following data: magnitude of S = 600 VA; Q = 450 VAR (inductive). See attached file for full problem description.

Engine consumes 5kw of power and a reactive power of 2kvar at current of (3+j2) Amps. Find the applied voltage in complex form V=(a+jb). Then use P=Re(VI*) and Q=IM(VI*) to form two simultaneous equations. Please show workings.

An engine consumes 10kw of power and 4kvar reactive power at a current of (6+j4)Amps . Find the applied voltage in complex form using P=Re(VI) and Q=Im(VI) as simultaneous equations. Obviously V=(a+jb)

If the voltage and current supplied to a circuit or load by a source are: Vs = 170<(-0.157) V Is = 13<0.28 A determine a) The power supplied by the source which is dissipated as heat or work in the circuit (load). b) The power stored in reactive components in the circuit (load). c) The power factor angle and power facto

An electrical load operates at 240 Vrms. The load absorbs an average power of 8kW with 0.8 lagging power factor. How do I compute the complex power of the load and impedance?

For the circuit shown in Figure 2.24 (attached file), find: a) The currents i1 and i2. b) The power delivered by the 3-A current source and by the 12-V voltage source. c) The total power dissipated by the circuit. Let R1=25 ohms, R2= 10 ohms, R3= 5 ohms, R4= 7 ohms, and express i1 and i2 as functions of v. (Hint: Apply KCL

Refer to Figure 2.16 (see attached file): a) Find the total power supplied by the ideal source. b) Find the power dissipated and lost within the nonideal source. c) What is the power supplied by the source to the circuit as modeled by the load resistance? d) Plot the terminal voltage and power supplied to the circuit as a fu

Determine which elements in the circuit of Figure 2.10 (attached file) are supplying power and which are dissipating power. Also, determine the amount of power dissipated and supplied.

Comment on the difference between pf correction capacitors connected in star and delta.

Prior to t=0, a 100- uF capacitance is uncharged. Starting at t=0, the voltage across the capacitor is increased linearly with time to 100V in 2s. Then, the voltage remains constant at 100V. Sketch the voltage, current, power, and stored energy to scale versus time. Please show equations for the sketches.

The current through a 3-uF capacitance is shown in the attachment. At t=0, the voltage is v(0)=10v. Sketch the voltage, power, and stored energy to scale vs. time. In the sketch of each one, I need the equations worked out for each plot. (See attached file for full problem description)

Given the circuit shown in the attachment find: values and power dissipated. (Please see attachment for complete question and diagram. Thanks)

Water is the working fluid in a vapor power cycle with reheat, superheat and reheat. Superheated steam enters the first turbine stage at 8 MPa, 480 C and expands to 0.7 MPa. It then is reheated to 480 C before entering the second turbine stage, where it expands to the condenser pressure of 8 KPa. The mass flow rate of steam e

Question: An electrical load operates at 240 volts rms. The load absorbs an average power of 8 kW at a lagging power factor of 0.8. a) Calculate the complex power of the load. b) Calculate the impedance of the load. Please view attachment for multiple choice options.

An incandescent lightbulb rated at 100 W will dissipate 100 W as heat and light when connected across a 110-V ideal voltage source. If three of these bulbs are connected in series across the same source, determine the power each bulb will dissipate.

See attached file.

An area of an interconnected 60 hz power system has three turbine generator units rated 100MVA, 200MVA, and 600MVA respectively. Regulation constants are given for each unit, with the load suddenly decreasing by 100MW. With assumptions made and a frequency response of beta = 165 p.u., calculate the MW decrease in mechanical ou

A three-phase overhead transmission line line has a per-phase resistance of 0.15 ohm/km and a per-phase inductance of 1.3263 mH/km. Assume that the shunt capacitance is negligible. The length f the line is 40 kilometers and it operates under 220 kV and 60-Hz. The line is supplying a three-phase load of 381 MVA at 0.8 power facto

Consider the electric power system shown {see attachment}. The power-flow solution of this system can be obtained without resorting to iterative techniques. The elements of the bus admittance matrix Ybus have been calculated as: {see attachment}. Calculate the phase angle {see attachment} by using the real and reactive power

Show how an ideal Operational Amplifier with an open loop gain = A can be used to provide: i) a non-inverting amplifier with gain= +6v/v. ii) an inverting amplifier with gain= -3v/v. iii) an integrator with gain= +3. Explain the purpose of every component in your circuits. Please see attached for full question.

Synchronous Generator A 250 kVA, 280 V, three-phase, four-pole, 60 Hz, synchronous generator with a synchronous reactance of 0.99 ohms per phase is operating at rated conditions and a power factor of 0.832 lagging. The magnetization curve for the generator is shown in Figure 1. a. Sketch a phasor diagram for the generator. b.

The fixed threshold of a radar detector was set, assuming a known noise power, to yield P_FA = 10^-6. The actual noise power was 3 dB higher than expected. What will be the actual P_FA?

Please refer to the attached file. DC Machines A 300 hp, 500 V, 1750 rpm DC shunt motor, operating at rated conditions has an efficiency of 92.0 percent... (see attachment)

Both machines in the attached diagram are rated at 50 MVA, 20 KV. The system base is the machines' base. Find the real value of the fault current for a 3-Phase fault at the motor terminals.

1. {see attachment for diagram and details} All reactances are on the System's Base. Write the Nodal Equations and the YBus Matrix. 2. {see attachment for diagram and details} Find P&Q delivered from the generator's terminals to the system

For a 3-Phase fault at Bus 3, find (see attachment) the post fault bus voltages for each bus, and the currents to all busses. Show your work, including the Y & Z matrices. Explain your method of matrix inversion. **Please see attachment for complete question and diagram.