Share
Explore BrainMass

Power Engineering

Circuit Elements - Power Dissipated

Given the circuit shown in the attachment find: values and power dissipated. (Please see attachment for complete question and diagram. Thanks)

Rankine Cycle - Net Power, Thermal Efficiency and Heat Transfer

Water is the working fluid in a vapor power cycle with reheat, superheat and reheat. Superheated steam enters the first turbine stage at 8 MPa, 480 C and expands to 0.7 MPa. It then is reheated to 480 C before entering the second turbine stage, where it expands to the condenser pressure of 8 KPa. The mass flow rate of steam e

Complex Power and Impedance

Question: An electrical load operates at 240 volts rms. The load absorbs an average power of 8 kW at a lagging power factor of 0.8. a) Calculate the complex power of the load. b) Calculate the impedance of the load. Please view attachment for multiple choice options.

Dissipations of Power in Lightbulbs

An incandescent lightbulb rated at 100 W will dissipate 100 W as heat and light when connected across a 110-V ideal voltage source. If three of these bulbs are connected in series across the same source, determine the power each bulb will dissipate.

Turbine Unit and Mechanical Output Generated

An area of an interconnected 60 hz power system has three turbine generator units rated 100MVA, 200MVA, and 600MVA respectively. Regulation constants are given for each unit, with the load suddenly decreasing by 100MW. With assumptions made and a frequency response of beta = 165 p.u., calculate the MW decrease in mechanical ou

A Three-Phase Overhead Transmission Line

A three-phase overhead transmission line line has a per-phase resistance of 0.15 ohm/km and a per-phase inductance of 1.3263 mH/km. Assume that the shunt capacitance is negligible. The length f the line is 40 kilometers and it operates under 220 kV and 60-Hz. The line is supplying a three-phase load of 381 MVA at 0.8 power facto

Power-Flow Solution (Calculate Phase Angle via Real and Reactive Power Equations)

Consider the electric power system shown {see attachment}. The power-flow solution of this system can be obtained without resorting to iterative techniques. The elements of the bus admittance matrix Ybus have been calculated as: {see attachment}. Calculate the phase angle {see attachment} by using the real and reactive power

Electronics (about operational amplifier)

Show how an ideal Operational Amplifier with an open loop gain = A can be used to provide: i) a non-inverting amplifier with gain= +6v/v. ii) an inverting amplifier with gain= -3v/v. iii) an integrator with gain= +3. Explain the purpose of every component in your circuits. Please see attached for full question.

Electrical Energy Conversion: Synchronous Generator

Synchronous Generator A 250 kVA, 280 V, three-phase, four-pole, 60 Hz, synchronous generator with a synchronous reactance of 0.99 ohms per phase is operating at rated conditions and a power factor of 0.832 lagging. The magnetization curve for the generator is shown in Figure 1. a. Sketch a phasor diagram for the generator. b.

Probability of a False Alarm: Noise Power

The fixed threshold of a radar detector was set, assuming a known noise power, to yield P_FA = 10^-6. The actual noise power was 3 dB higher than expected. What will be the actual P_FA?

Power Systems - Nodal Equations, Y Bus Matrix and P&Q

1. {see attachment for diagram and details} All reactances are on the System's Base. Write the Nodal Equations and the YBus Matrix. 2. {see attachment for diagram and details} Find P&Q delivered from the generator's terminals to the system

Power Systems Problem (3-Phase Fault; Matrices; Matrix Inversion)

For a 3-Phase fault at Bus 3, find (see attachment) the post fault bus voltages for each bus, and the currents to all busses. Show your work, including the Y & Z matrices. Explain your method of matrix inversion. **Please see attachment for complete question and diagram.

Electrical Power Systems Problems

Electrical Power Systems Problems 1. A three-phase line serves a 54MW load with a .9 lagging power factor at a line voltage of 138KV. The line constants are: A = D = 1 at 0 degrees B = 85 ohms At 70 degrees C = 950 x 10^4 siemens at 90 degrees Find the line and phase values of voltage and current at the sending end.

[17.18] Power electronics

[Power electronics] The measured values of a diode at a temperature of 25 Degrees Celsius are: Vd=1V at Id=50A, Vd=1.5V at Id=600A. Determine (i) the emission coefficient n, and (ii) the leakage current. ============================================== Answers: a. (a) n=6, (b) Is=0.2A b. (i) n=5, (ii) Is=1A c. (i) n=8, (ii)

Ladder Logic Timers

SEE ATTACHMENT: #4 and the Figure Above it. Questions: a.)What type of timer has been programmed? b.)What is the length of the time-delay period? c.)When does the timer start timing? d.)When is the reset? e.)When will rung 3 be true? f.)When will rung 5 be true? g.)When will output PL4 be energized? h.)Assume that

Risk Analysis and Management Fault tolerant systems Nuclear Power Plant Safety

2. A fault-tolerant nuclear reactor protection system consists of 3 processors and 6 memories. The system will fail if (a) any 2 of the 3 processors fail, or (b) any 2 of the 6 memories fail. The nominal failure rates of these processors and memories, provided by the manufacturers, are 1 per 10,000 hours and 1 per 2,000 hours

Battery Charging

In order to charge a battery there must be a potential difference between the charger and the battery,i.e.a charging voltage.As a battery is being charged this potential difference reduces and since the charging current is related to this charging voltage the rate of charging also reduces. A battery is put on charge.The relat

Parameters of a white Gaussian noise process

A white Gaussian noise process X(t) with power spectral density (PSD) N0/2=0.1 is input to an LTI filter with a transfer function H(f) given by H(f) = 2, |f| <= W and 0, otherwise The output is denoted Y(t). (1) Find the autocorrelation function RX(t) of X(t). (2) Find E[Y(t)]. (3) Find the PSD of Y(t). (4) De

Power Electronics

Hi, I need assistance answering the following questions. Please open the attachment to see the problems, they are related to circuits.

Power Electronics and Snuber Circuit

I need help breaking this problem down. We DO NOT use MATLAB or Spice. The JPEG shows the entire problem with the given sets. Can anyone show me the correct set?

Inkjet Printer Power and Rating Problem

An A4 inkjet printer uses ink cartridges with a mass of 250g supported by a carrier having a mass of 150g. The printer head is moved across the page by a motor driving through a toothed belt. It makes a single traverse of the page in 1s, which includes acceleration and deceleration times. The acceleration and deceleration zones

POWER SERIES SOLUTIONS

FIND POWER SERIES SOLUTIONS IN POWERS OF X OF THE D.E. y''-xy'+(3x-2)y=0 and FIND POWER SERIES SOLUTION OF EA. OF THE INITIAL-VALUE. y''+xy'-2y=0, y(0)=0, y'(0)=1 ON BOTH OF THE PROBLEMS I GOT STUCK ON THE RECURRENCE FORMULA AND GETTING POWERS OF X.