Explore BrainMass
Share

# Vector Calculus

### Strictly Separating Set Characteristics

For both 1 and 2, could you tell me whether or not there is a hyperplane that strictly separates the given sets A,B. If there is, find one. If there is not, prove so please. 1) A={(x,y):abs(x) + abs(y) <=1}, B={(1,1)} 2) A={(x,y):xy >= 4}, B={(x,y):x^2+y^2 <= 1} where abs = absolute value

Y = 2x+5

### Vectors in R^n, Orthogonal Spaces and Lines of Best Fit

1) Let u and v be vectors in R^n. a) Prove that llull = llvll if and only if u + v and u - v are orthogonal. b)Let (proj of u onto v) be the vector projection of u onto v. For u, v does not equal to 0, prove that (projection of u onto v - u) is orthogonal. 2) Find a basis for the space orthogonal to [1,1,0]^T in R^3.

### Mechanics: Scalar and Vectors

1. Given the following 3 vectors, all of which lie in the horizontal plane, (see attachment for list of vectors), find: (a) 3A-B (b) 1) A?B 2) B?A (c) 1) A*B 2) B*A (d) (5A-6B+4C)?(B*C-A*B) *(Please see attachment for complete question and equations)

### Vector Space Subsets and Subspaces

Let [a,b] be an interval in {see attachment}. Recall that the set of functions {see attachment} is a vector space over {see attachment} with addition (f+g)(x):=f(x)+g(x) and scalar multiplication a) choose [a,b]=[0,1]. Decide for each of the following subsets if it is a subspace. Justify your answer by giving a proof or a c

### Properties of vector spaces.

Which of the following are subspaces of the vector space ? Justify your answer. A vector space in R^3 such that every vector (a,b,c) has the property: a-b-c=2 A vector space in R^3 which has the form (a,b,a+b)

### Vector Subspaces Definition

If U is a subspace of V then W=V-U (a vector x that belongs to W can not belong to U) W also is a subspace. (Proof or counterexample)

### Determine a Normal Vector to Surface at the Given Point

Let X: R^2 → R^3 be the parameterized surface give by X(s,t) = (s^2 - t^2 , s + t, s^2 + 3t) A) Determine a normal vector to this surface at the point (3, 1, 1) = X(2, -1) b) Find an equation for the plane tangent to this surface at the point (3, 1, 1).

### Sketch/Drawing: Vectors

Could you please give me some sort of a sketch or drawing of what a set S (its interior and its closure) would look like when: S= {(x,y) : -1<= y < cosx, -2# < x <= 2#} Note: <= is less than or equal to < is less than # is pi (3.14....).

### Vector Subspaces Explained

What would a vector v in R4 such that: V(1,2,1,0) T V(1,0,-1,1) T V(0,2,0,-1) = <v> AND find scalars a,b,c,d such that <(1,2,1,0),(1,0,-1,1),(0,2,0,-1)> = <v> Please note: <v1,...,vk> denotes the vector subspace of Rn generated by the vectors v1,...,vk and that for scalars a1,...,an belonging to R, V(a1,...,an) =

### Edges & Vertices of Kn and Km,n

Please see the attached file for the fully formatted problems. Find Edges & Vertices of Kn and Km,n.

### Vector projection and follow-up

The diagram attached shows a rectangular solid, two of whose vertices are A=(0,0,0) and G=(4,6,3). a) Find vector projections of AG onto the following vectors: AB, [0,1,0], [-1,0,0] and [0,0,1]. b) Find the point on AC that is closest to the midpoint of GH (The diagram is on page 21 and it is problem 6) (As you can see

### Sketch Hyperbola after Finding Center, Vertex and Foci of the Equation

Sketch hyperbola after finding Center, Vertex and Foci of this equation: (y+5)squared/16 - xsquared/9 =1 Please show steps needed

### Sketch the Parabola : Find the Vertex, Foci and Directrix

Sketch parabola first finding the vertex, foci and directrix for this equation y+3=1/8(x-5)squared meaning the (x-5) part of equation is squared.

The temperature of a plate at the point (x,y) is given by T(x,y) = 300+ 3x^2 -2y^2. A heat hating ant is located at the point (3,2). In which direction will the ant begin to walk? Give a unit vector in that direction.

### Multivariable Calculus : Double Integral - Polar Coordinate

( ∫ ^n_r means that n is on the top of the ∫ and r is on the bottom) Evaluate the given integral by first converting to polar coordinates: ∫ ^2_1 ∫ ^(square root of 2x - x^2)_0 (1/(square root of x^2 + y^2)) dy dx ∫: is the integral symbol

### Multivariable Calculus

Please show all work; don't explain each step. Please DON'T submit back as an attachment.Thank you. ( &#61682; ^n_r means that n is on the top of the &#61682; and r is on the bottom) Evaluate the iterated integral: &#61682; ^2_-1 &#61682; ^3_1 (2 x - 7y) dy dx &#61682;: denotes an integral

### Type of Vectors in Matrix

The set of vectors {[ 1 -1] , [ 1 -1] , [ 2 -1] } [ 2 0 ] [ -1 0] [ -1 0] from M_2(R) is: A. linearly dependent B. linearly independent C. orthogonal D. a spanning set for M_2(R) E. a basis for M_2(R)

### Vectors

Please see attachment. Require problems solving, also explanations etc for better understanding of vectors. VECTOR PROBLEMS (1) Let l be the line with equation v = a + t u. Show that the shortest distance from the origin to l can be written | a × u |

### Vector Operations Direction Angles

Given vector v with /v/ = 4 and direction angle of 45 degrees, write v in the form <a,b> a= 4cos 45 degrees= 4*.707=2.83 b= 4sin 45 degrees= 4*.707=2.83 vector v (a,b) becomes v(2.83, 2.83) compute (2*w).(u-v) where w = <-1, 0> 2(2<100)(5<60-4<45) 2*2<180*1.536<102.5 =6.144<282.5 or 6.144<-77.5degrees vector from equat

Use the normal gradient vector to write an equation of the line (or plane) tangent to the given curve (or surface) at the given point P: x^(1/3) + y^(1/3) + z^(1/3) = 1; P(1, -1, 1).

### Vector and direction angle

Please show me the steps Tahnk You A. write u in the form <a , b> B.Compute (2*u).v, where v=<sqrt(3) , -3>

### Vectors : Dot Product

Let u=<-2,1> v=<3,4> w=<-5,12> Use properties of the dot product. u(Dot)(v-w) or u.(v-w)

### Moorean 3-Space

Please see the attached file for full problem description. 1. Demonstrate (check the properties) that the following function is an inner product in R^3. (Call R^3 with this inner product Moorean 3-space). Let u=(u_1,u_2,u_3) and v=(v_1,v_2,v_3). Then <u, v> = uAv^T, where A=[ 2 0 0 ]

### Vector Spaces : Rank

Please see the attached file for the full problem description. 1. Find the rank of A= [1 0 2 0] [ 4 0 3 0] [ 5 0 -1 0] [ 2 -3 1 1] . Show work. Help:

### Vectors : Planes, Points, Cross Product and Dot Product

(1) a. Find the (vector) equation of the plane passing through the points (1,2,-2), (-1,1,-9), (2,-2,-12). b. Find the (vector) equation of the plane containing (1,2,-1) and perpendicular to (3,-1,2). (2) Suppose a, b, c are non zero vectors. a. Explain why (a x b) x (a x c)

### Linear Alegbra : Vectors

Find equations for the indictated geometrical objects The line through the point P=(1,1,1) and perpendicualar to the plane 4x-2y+6z=3

### Linear Alegbra : Vector Space

Let V= (x,y) in R2{y=3x+1} with addition and multiplication by a scalar defined on V by: (x,y)+ (x',y')= (x+x',y+y'-1) k(x,y)=(kx,k(y-1)+1) Given that with these definitions, V satisfies vector space axioms 1,2,3,6,8,9,and 10 determine whether or not V is a vector space by checking to see if axioms 4,5,7,are also satisfied.

### Vector space and basis

Consider the following elements of the vector space P3 of all polynomials of degree less than or equal to 3. p(x)= x-1, q(x)=x+x2, r(x)= 1+x2-x3 Do these three polynomials form a basis for P3?