Share
Explore BrainMass

Vector Calculus

Normal gradient vector

Use the normal gradient vector to write an equation of the line (or plane) tangent to the given curve (or surface) at the given point P: x^(1/3) + y^(1/3) + z^(1/3) = 1; P(1, -1, 1)

Gradient vector

Find the gradient vector f at the indicated point P: f(x, y, z)=(x^2 + y^2 + z^2) ; P(17, 3, 2) : is the square root of

Vectors : Dot Product

Let u=<-2,1> v=<3,4> w=<-5,12> Use properties of the dot product. u(Dot)(v-w) or u.(v-w)

Vectors : Planes, Points, Cross Product and Dot Product

(1) a. Find the (vector) equation of the plane passing through the points (1,2,-2), (-1,1,-9), (2,-2,-12). b. Find the (vector) equation of the plane containing (1,2,-1) and perpendicular to (3,-1,2). (2) Suppose a, b, c are non zero vectors. a. Explain why (a x b) x (a x c)

Linear Alegbra : Vectors

Find equations for the indictated geometrical objects The line through the point P=(1,1,1) and perpendicualar to the plane 4x-2y+6z=3

Linear alegbra

Consider the following elements of the vector space P3 of all polynomials of degree less than or equal to 3. p(x)= x-1, q(x)=x+x2, r(x)= 1+x2-x3 Do these three polynomials form a basis for P3?

Vector analysis

Apply Stroke's theorem to evaluate the integral over C of (ydx + zdy + xdz), where C is the curve of intersection of the unit sphere x^2+y^2+z^2=1 and the plane x+y+z=0, traced anticlockwise viewed from the side of the positive x-axis

Vector Calculus

F(x,y) = x^3 + y - xy + 1 a) Are there points on the curve y = (x - 1)^2 where Gradient f is perpendicular to the curve? b) Find the absolute maximum and minimum of the function in the region 1 >= x >= 0 and y >= 0.

Vertex-arboricity

Let G be k-critical graph with respect to vertex-arboricity (k>=3). Prove that for each vertex v of G, the graph G-v is not (k-1)-critical with respect to vertex-arboricity.

Vector Subspace of the Vector Space

1. Determine whether the following sets W are vector subspaces of the vector space V. a. V=R^4, A and B are two 3 X 4 matrices. W={X is an element of R^4:Ax-3Bx=0}. b. V=C', W={f is an element of C': f(x+3)=f(x)+5 c. V=P, W={f is an element of P: f'(2)=0} d. V=C', W={f is an element of C': The integral of f(x)dx fr