Explore BrainMass

Explore BrainMass

    Geometry and Topology

    BrainMass Solutions Available for Instant Download

    Angles/segments on dotted paper

    On a sheet of dot paper or on a geoboard like the one shown, create the following: 1. Right angle 2. Acute angle 3. Obtuse angle 4. Adjacent angles 5. Parallel segments 6. Intersecting segments

    Validity of the arguments by using Euler Circles

    Truth tables are related to Euler circles. Arguments in the form of Euler circles can be translated into statements using the basic connectives and the negation as follows: Let p be "The object belongs to set A." Let q be "the object belongs to set B." All A is B is equivalent to p -> q No A is B is equivalent to p -> ~q

    Finding the Focus of a Parabolic Dish

    A satellite dish, is the shape of a parabola. Signals coming from a satellite strike the surface of the dish and are reflected to the focus where the receiver is located. The satellite dish has a diameter of 12 ft and a depth of 2 ft. If the diameter of the dish is halved how far from the base of the dish should the receiver

    Quaternion group presentation

    Show that the quaternion group Q_2 = {+1, -1, +i, -i, +j, -j, +k, -k} has presentation <a,b|a^4 =1, a^2 = b^2, ab = ba^3> I need a rigorous proof with explanations so that I can study and understand please. I have an exam on Thursday.

    Calculating Perimeters and Areas

    1. An ecology center wants to set up an experimental garden using 300m of fencing to enclose a rectangular area of 5000 . Find the dimensions of the garden. 2. A landscape architect has included a rectangular flown bed measuring 9ft by 5ft in her plans for a new building. She wants to use two colors of flowers in the bed, on

    Open Sets, Connectivity and Continuous Functions

    3. a) Let M be a connected topological space and let f : M ---> R be continuous. Pick m1,m2 2 M and suppose that f(m1) < f(m2). Let x 2 R be such that f(m1) < x < f(m2). Show that there is m M with f(m) = x. (Hint: Use a connectedness argument.) b) Give R1 the usual product topology as the product of infinite copies of the rea

    Three-Dimensional Topological Group

    Please help with the following problem. Let M = SL(2) be the set of 2 × 2 matrices with unit determinant. Show that, when regarded as a subset of R4 under ( a b ) ( c d ) <--> (a, b, c, d) Exists R4 and equipped with subspace topology, SL(2) becomes a 3-dimensional topological group. That is, show that (i) SL(2) is a g

    Geometry - Converses

    4. State the converse of each of the following statements: (a) If lines l and m are parallel, then a transversal to lines l and m cuts out congruent alternate interior angles. (b) If the sum of the degree measures of the interior angles on one side of transversal r is less than 180°, then lines l and m meet on that side of tr

    Volume of a Conical Slice

    20. R is a slice of thickness k perpendicular to the axis of a right circular cone having maximum radius b and minimum radius a. Show that its volume is V(R) = pi/3(a^2 + ab + b^2)k. Explain how Exercise 18 and 19 are essentially special cases of this. 18. C is a cone of height h and base radius a. Show V(C) = pi/3*a^2*h.

    Lines and Intersections

    Incidence Geometry: Give proofs for the following: i.For every line there is at least one point not lying on it. ii.For every point, there is at least one line not passing through it iii.For every point P, there exist at least two distinct lines through P.

    Length of a rectangle is 4 centimeters more than its width

    The length of a rectangle is 4 centimeters more than its width. If the width is increased by 2 centimeters and the length is increased by 3 centimeters, a new rectangle is formed having an area of 44 square centimeters more than the area of the original , rectangle. Find: 1. The dimensions of. The, new rectangle 2. The perim

    Order of operations, Area and Volume of figures

    I need to know what steps are taken to come to the answer to these two problems. (8-6)^5 - 28 Evaluate. 72 ÷ 8 - 9 ÷ 3 What and how do I find the area of this figure? What and how do I find the volume of the solid shown? How do I show the answer in simplest form for the next three problems?

    Geometry of Circumference and Sphere

    The equatorial radius of the earth is approximately 3960 mL. Suppose that a wire is wrapped tightly around the earth at the equator. Approximately how much must this wire be lengthened if it is to be strung all the way around the earth on poles 10 ft above ground?

    Linear function applications

    Library Assignment Part 1: What is the formula for the volume of a rectangular solid? Find an object in your residence that has the shape of a rectangular solid. Measure and record the length, width, and height of your object in either centimeters (to the nearest 10th of a centimeter) or inches (to the nearest quarter of an inc

    Polygons : Angles Encountered as One Walks Around a Polygon

    Draw three different nonconvex polygons. When you walk around a polygon, at each vertex you need to turn either right (clockwise) or left (counterclockwise). A turn to the left is measured by a positive number of degrees and a turn to the right by a negative number of degrees. Find the sum of the measures of the turn angles of t

    Characteristic function proof

    Let A be a subset of R^n. Show that the characteristic function Xa is continuous on the interior of A and on the interior of its complement A' but is discontinuous on the boundary &#8706;A = A (bar)&#8745;A' (bar)

    Real-Life Activities Involving Congruent Objects

    Out of class activities that I could employ to make students aware of congruent objects could be: - running - playing soccer - drawing pictures in the school yard Hoe does running and playing soccer make students aware of congruent objects?

    Solving for the Area

    Question: The length of a rectangle is 3yd longer than its width. If the perimeter of the rectangle is 38yd, find its area.

    Mean, Median, Mode, Tables, Pictographs and Bar Graphs

    Find the median of each set of numbers. 14. 1, 4, 9, 15, 25, 36 Find the mode of each set of numbers. 18. 41, 43, 56, 67, 69, 72 20. 9, 8, 10, 9, 9, 10, 8 Solve the following applications. 24. Statistics. A salesperson drove 238, 159, 87, 163, and 198 miles (mi) on a 5-day trip. What was the mean number of mil


    Consider a regular tetrahedron with vertices: (0,0,0) , (k,k,0) , (k,0,k) , and (0,k,k) a) sketch the graph of the tetrahedron b) find the length of each edge c) find the angle between any two edges d) Find the angle between the line segments from the centroid ( k/2, k/2, k/2) to two vertices.

    Orthogonal planes.

    Given two planes with equations x + 2y + z = 1 and x - 2y + 3z = 3, (a) Show that the planes are orthogonal. (b) Find the plane that is orthogonal to the given ones and passes through the point (1;-1; 2).

    Coordinate Geometry ...

    (1) Show that the points A(4, 1), B(2, -3), C(0, 3) cannot form an equilateral triangle. (2) Draw the graph of the straight line 3x ?4y = 12 (3) Find the equation of a line parallel to the x- axis and passing through the point (5, 7).

    Find the Length of Base of a Square Pyramid

    Suppose a pyramid has a retangular base whose width is 5 centimeters less than its length. If the height is 1 centimeter and the volume is 12 cubic centimeters, find the length of the base. (V=1/3Bh)

    Radians, Circles, and Angular Velocity

    1. Find the area of a sector having a central angle of 60° in a circle of radius 8 inches. 2. Find the perimeter and area of a circular sector whose angle is 3.5 radians if the circumference of the circle is 58 ft. 3. A point on the wheel of radius 10 feet moves with a linear velocity of 40 feet per second. Find the angul

    Volume Formula Solid Spheres

    See attached The volume of a solid sphere of radius r is given by the equation V=(4/3)pir^2. Derive this equation by using either the disk or shell method for finding the volume of a solid of revolution.

    smallest possible value of an angle

    T(A) is defined for A by T(A)= 3cos(A - 60) + 2 cos(A + 60) I have established that T(A) can be written SQRT(7)sin(A + 70.9), now need to find the smallest possible value of A such that T(A) + 1 = 0.