Purchase Solution

Open Sets, Connectivity and Continuous Functions

Not what you're looking for?

Ask Custom Question

3. a) Let M be a connected topological space and let f : M ---> R be continuous. Pick m1,m2 2 M and suppose that f(m1) < f(m2). Let x 2 R be such that f(m1) < x < f(m2). Show that there is m M with f(m) = x. (Hint: Use a connectedness argument.)
b) Give R1 the usual product topology as the product of infinite copies of the real axis. Let f : R1 --> R1 be given by f(x1, x2, x3, x4, x5, . . . ) = (x1, x3, x5, . . . ). Show that f is continuous.

The first one I think I got, connected(M) --> connected (R) open sets in f-1 implies open sets in f, and connected definition implies there exists a m. The second is a bit more tricky, I assume its an inverse open set argument.(its the intermediate value problem, so far I'm correct and various other proofs depend on how detailed the author is.)

The second part is different. I want to say that piece wise it is continuous, or that f-1*f=(x1,x2,x3...)=f-1(x1,x2,x3,....)=f(x1,x2,x3...) so f = f-1 and since we take open sets to open sets by well defined we get a continuous function.

Purchase this Solution

Solution Summary

The solution discusses open sets, connectivity and continuous functions.

Solution Preview

Please see the attached file for the complete solution.

Problem #3
(a) Proof:
Since is continuous, then we define as , where is considered as a fixed number given in the problem. So is also continuous. From the condition, we have , then we have
, ...

Purchase this Solution


Free BrainMass Quizzes
Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Probability Quiz

Some questions on probability

Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.