Share
Explore BrainMass

Triangles

Find the area covered by the chemical retardant.

1) In mountain communities, helicopters drop chemical retardants over areas which approximate the shape of an isosceles triangle having a vertex angle of 38 degrees. The angle is included by two sides, each measuring 20 ft. Find the area covered by the chemical retardant. 2) The chemical retardants are freight shipped from

Solving Radical Equations and Finding Side of a Cube Given Volume

1) Solve the following equations. a) sqrt(x) - 1 = 4 b) sqrt(x^3) = 8 c) third root of x^2 = 4 2) Is sqrt(x^2) an identity (true for all values of x)? Answer: Explain your answer in this space. 3) For the equation x - sqrt(x) = 0, perform the following: a) Solve for all values of x that satisfies the equatio

Geometry Proofs : Triangles, Bisectors and Midpoints

1- Given triangle as shown (infigure 241W) with AF = 1/4 AB, AE = 1/3 and BE Intersect CF = O (BE has ray bar on top and CF has distance bar on top) prove that AO hits BC At its midpoint. 2- Use Ceva's theorem to prove that the internal bisectors of the angles of a triangle are concurrent (cevas theorem: given triangle AB

Internal bisectors and incenter of a triangle

1- Given triangle ABC, prove that an internal bisectors of an angle of a triangle divides the opposite sides (internally) into two segments proportional to the adjacent sides of the triangle. That is prove that DB/DC = AB/AC. (D is the point where e internal bisector of <A meets with BC) 2- Given triangle ABC with in-center

Pascal's Triangle Representation

(See attached file for full problem description) --- The question is =========== Let S_(n,0), S_(n,1), and S_(n,2) represent the sums of every third element in the nth row of Pascal's Triangle beginning on the left. For example: Row 5: 1 5 10 10 5 1 So, S_(5,0) = 1 + 10 = 11 S_(5,1) = 5 + 5 = 10 S_(5,2) =

Shortest Path Problem

1 a. Three cities are at the vertices of and equilateral triangle of unit length. Flying Executive Airlines needs to supply connecting services between these three cities. What is the minimum length of the two routes needed to supply the connecting service? 1 b. Now suppose Flying Executive Airlines adds a hub at the "cen

Geometry Application Word Problems

Geometry has many practical applications in everyday life. Estimating heights of objects, finding distances, and calculating areas and volumes are commonplace. One of the most fundamental theorems in geometry, the Pythagorean Theorem, allows us to make many of these calculations. The Pythagorean Theorem states that the square of

Fibonacci Sequence Proofs, Pascal's Triangle and Binomial Coefficients

Practice problem 1 Fn is the Fibonacci sequence (f0 = 0, f1 = 1, fn+1 = fn + fn-1). By considering examples, determine a formula for the following expressions, and then verify the formula. a. f0 + f2 + f4 + ...+f2n b. f0 - f1 + f2 - f3 + ...+(-1)n fn --------------------------------------------- Practice proble

Geometric Series : Infinite Series of Circles inside Equilateral Triangles

An equilateral triangle is inscribed in a circle of radius 100. The area of the circle which lies outside of the triangle is shaded. The process continues to infinity. What is the radius for the second area/ third area/ fourth area? Side of first area/ side of second area/ side of third area/ side of fourth area? Area

Word Angle Problem and Sum of Measures of Acute Angles

Find the sum of the measures of the five acute angles that maup up this star...... OK so for this I noticed the 5 triangles that make up the star so i multiplied 180 x 5=900 Then to get the acute angles I did 180/5 and got 36... So the triangle measure would be 72 + 72 +36=180 Acute angles = 36....??? Second problem..

Equations of Lines and Intersections

The diagram below (see attachment) shows a triangle ABC whose vertices are at A (-1, 3), B (6, 5) and C (8, -3). The line BP is perpendicular to the line AC, and M is the midpoint of BC. Note that BP is called an altitude of triangle ABC and that AM is called a median of triangle ABC. a) Find the gradient of i) The

Equilateral Triangles within a Closed Area

(a) Figure 1 shows a closed area ABCDEF in which ABDE is a rectangle and BCD and AFE are equilateral triangles. AE x cm and AB y cm. (i) Find, in terms of x andy, a formula for the area enclosed by the figure ABCDEF and a formula for the perimeter ABCDEF. (ii) Find the minimum perimeter (to two decimal places) of ABCDEF enclos

Right Triangle Functions

Please give answer and explanation and or steps if needed please to check my work. 1) Draw a right triangle whose sides (not the hypotenuse) have lengths of 8 and 15. Angle A is adjacent to the side of 8, and angle B is adjacent to the side with the length of 15. The tan A=? 2) For the same triangle in question 1 do f

Geometry Construction- To Construct A Congruent Triangle

Step 1. Draw an acute scalene triangle. Label the vertices A, B,C on the interior of each angle. Step 2. Construct a segment congruent to line segment AC. Label the endpoints D and E. Step3. Adjust the compass setting to the length of line segment AB. Place the compass at point D and draw a large arc above line segment D

Area of quadrilateral

The perimeter of a building is 74'by 59'by 103'by 121'. How can the square footage of the building be calculated?

Two triangles: The lengths of the sides opposite the angles.

In this question ABC and PQR are two triangles, and the lengths of the sides opposite the angles A,B,C P, Q, R are a,b,c,p,q,r, respectively. Choose the THREE false statements. Options. A. If angle A= angle Q and angle B= angle P. then it must follow that c b --- = -- r p B. I

The Radius of the Circumscribed circle for a triangle

The circumscribed circle is the circle passing through the three vertices of a triangle ABC. Assume the following results from geometry. The perpendicular bisectors of the sides of a triangle meet in a point O that is the center of the circumscribed circle. a) According to a theorem from geometry, the measure of the angle

Geometric proof

Prove that the midpoint of the hypotenuse of a right triangle is equidistant from the three vertices.

Right triangles

How do I find the third angle in a right angle triangle if I know one of the angle's is 65 deg?