### Surface Area Word Problem

A water tank has the shape of a cone. The tank is 10m high and has a radius of 3m at the top. If the water is 5m deep (in the middle) what is the surface area of the top of the water?

Explore BrainMass

- Anthropology
- Art, Music, and Creative Writing
- Biology
- Business
- Chemistry
- Computer Science
- Drama, Film, and Mass Communication
- Earth Sciences
- Economics
- Education
- Engineering
- English Language and Literature
- Gender Studies
- Health Sciences
- History
- International Development
- Languages
- Law
- Mathematics
- Philosophy
- Physics
- Political Science
- Psychology
- Religious Studies
- Social Work
- Sociology
- Statistics

A water tank has the shape of a cone. The tank is 10m high and has a radius of 3m at the top. If the water is 5m deep (in the middle) what is the surface area of the top of the water?

Write a compound inequality to describe tha range of possible measures for side c in terms of a and b. Assume that a > b > c.

1. I need to see a construction and proof. Given a quadrilateral EFGH so that all four sides are congruent to a circle. Prove that EF+GH=EH+FG 2. Prove that a perpendicular bisector of a chord in a circle is a diameter.

What is the length of the hypotenuse of the right triangle ABC in examination figure,if AC=6 and AD=5 note : draw a triangle A B C and the height from point C to D,the point D is in between A and B,the distance between A and D is 5 and the distance between A and C is 6

1) Solve the following equations. a) sqrt(x) - 1 = 4 b) sqrt(x^3) = 8 c) third root of x^2 = 4 2) Is sqrt(x^2) an identity (true for all values of x)? Answer: Explain your answer in this space. 3) For the equation x - sqrt(x) = 0, perform the following: a) Solve for all values of x that satisfies the equatio

Question re slant height of ski lodge roof - isosceles triangle, base is 14 m. Vertical angle is 36 degrees. What would slant height of sides of roof (triangle) be, i.e., side AC or side BC?

A ski chalet roof is isosceles triangle and has a vertical angle of 36 degrees. Width of base is 14 m. What is the slant height of roof? keywords: hypotenuse, pythagorean, pythagorus, theorem

In a triangle ABC, Angles are given in a particular order. Each angle is an acute angle. A number M is defined as Cos(A-B)/2SinA/2SinB/2. Find the minimum value of M.

The sides of a right triangle are 4 and 12. How do I get the angle?

# 18, # 24, # 42

How many distinct points does the 9-point circle have when the triangle is - isosceles - equlateral - right-angled isosceles.

(a) (i) Find the area of the triangle with vertices (t, t-2), (t+2. t+2). (t-3, t) Does the area changes with t? (ii) In a theorem of solid geometry, the volume of the tetrhedron is 1/3 (base area )x( height). Compute the volume of the tetrahedron with vertices A( -1, 2, 0), B=(3, 5, 1), C(0, 0, 1) and D=(4.-1, 3). Hint

The incircle of triangle ABC touches the sides BC, CA, AB at the points x,y,z respectively. yz is produced to meet BC at k. Show that Bx/Cx = Bk/Ck.

1- Given triangle as shown (infigure 241W) with AF = 1/4 AB, AE = 1/3 and BE Intersect CF = O (BE has ray bar on top and CF has distance bar on top) prove that AO hits BC At its midpoint. 2- Use Ceva's theorem to prove that the internal bisectors of the angles of a triangle are concurrent (cevas theorem: given triangle AB

1- Given triangle ABC, prove that an internal bisectors of an angle of a triangle divides the opposite sides (internally) into two segments proportional to the adjacent sides of the triangle. That is prove that DB/DC = AB/AC. (D is the point where e internal bisector of <A meets with BC) 2- Given triangle ABC with in-center

Caitlyn is a landscaper who is creating a triangular planting garden. The homeowner, Lisa, wants the garden to have two equal sides and contain an angle of 120°. Also, Lisa wants the longest side of the garden to be exactly 6 m. a)How long is the plastic edging that Caitlyn will need to surround the garden? b) What will

1- If we have a triangle ABC, then prove that the internal and external bisectors of the angle of a triangle are perpendicular (assume for angle A) 2- Prove that given triangle ABC with the altitude from B of the same length as the altitude from C, then the triangle must be isosceles.

This is a intermediate algebra problem using a triangle to find the length of the side marked x. Please see attached problem.

(See attached file for full problem description) --- The question is =========== Let S_(n,0), S_(n,1), and S_(n,2) represent the sums of every third element in the nth row of Pascal's Triangle beginning on the left. For example: Row 5: 1 5 10 10 5 1 So, S_(5,0) = 1 + 10 = 11 S_(5,1) = 5 + 5 = 10 S_(5,2) =

See attached pdf file for problem and diagram regarding angles.

1 a. Three cities are at the vertices of and equilateral triangle of unit length. Flying Executive Airlines needs to supply connecting services between these three cities. What is the minimum length of the two routes needed to supply the connecting service? 1 b. Now suppose Flying Executive Airlines adds a hub at the "cen

Geometry has many practical applications in everyday life. Estimating heights of objects, finding distances, and calculating areas and volumes are commonplace. One of the most fundamental theorems in geometry, the Pythagorean Theorem, allows us to make many of these calculations. The Pythagorean Theorem states that the square of

The points A(-1, -2), B(7, 2) and C(k, 4), where k is a constant are the vertices of traingle ABC. Angle ABC is a right angle. 1. Calculate the value of k 2. Find the exact area of traiangle ABC 3. Find the equqtion for the stright line l passing therough B and C. Give your answer in the form of ax + by = c = 0 , where a, b

A. Find an equation of a stright line passing through the points with coordinates (-1, 5) and (4, -2), giving your answer in the form ax + by + c = 0 , where a, b and c are integers. b. The line crosses the x-axis at the point A and the y-axis at the point B, and the O is the origin. Find the area of the triangle OAB.

A triangle has area 96 sq. in. and its height is two thirds of its base. What are the base and height of the triangle? (In mathematical language)

A person who is 6 foot tall walks away from a 40 foot tree towards the tip of the tree's shadow. At a distance of 10 feet from the tree the persons shadow begins to emerge beyond the tree's shadow. How much further must the person walk to completely be out of the tree's shadow?

Find the volume of a tetrahedron with height h and base area B. Hint: B=(ab/2)sin(theta) Also, please see the attached document for the provided diagram of the tetrahedron.

Please tell me which triangles are similar, which simularity postulate supports it, and determine the scale factor and how do you get the scale factor for this problem? (See attached file for full problem description)

Please tell me which triangles are similar and which similarity postulate supports it. Also determine the scale factor, if possible. (See attached file for full problem description)

Prove that the sides of an equilateral triangle, a square and regular hexagon circumscribed about a circle are in a G.P?