Share
Explore BrainMass

Triangles

Triangles

In Triangle Rst, medians RM, SN, and TP are congruent at point E What is the point E called? - I think it;s the centroid If Re=24 find RM. 24 (2/3)= 16 Did I do this problem correctly? Im not sure if i multiply by 1/3 or 2/3... The second part follows.... Ab is a chord of circle Q and ab=16cm. Radius QC is pe

45-45-90 Triangles : Length of Hypotenuse

1. In a 45-45-90 triangle, the length of each leg is 18. Find the exact length of the hypotenuse. 2. In the 45-45-90 triangle, the length of the hypotenuse is 20m. Find the EXACT length of each leg.

Prove the Theorem of the Broken Chord

The theory of the broken chord asserts that if AB and BC make up a broken chord in a circle, where BC > AB and if M is the midpoint of arc ABC, the foot F of the perpendicular from M on BC is the midpoint of the broken chord ABC.

Equations of Lines and Intersections

The diagram below (see attachment) shows a triangle ABC whose vertices are at A (-1, 3), B (6, 5) and C (8, -3). The line BP is perpendicular to the line AC, and M is the midpoint of BC. Note that BP is called an altitude of triangle ABC and that AM is called a median of triangle ABC. a) Find the gradient of i) The

Rectangle

How do I go about finding the area of triangle ACE in the following: In rectangle ABDF the following is given: AB=24 BC=7 AF=16 E is the midpoint of FD

Geometery : Volume of Cubes and Area of Triangle

A large cube is 2 feet on each edge. How many cubes - one inch on each edge- will it take to fill the large cube? If the base of a triangle is increased by 20% and the altitude to that base is decreased by 40% then by what percent is the area changed? Is that an increase or a decrease? Decrease by 30%. Is this correct?

Equitlateral Triangles within a Closed Area

(a) Figure 1 shows a closed area ABCDEF in which ABDE is a rectangle and BCD and AFE are equilateral triangles. AE x cm and AB y cm. (i) Find, in terms of x andy, a formula for the area enclosed by the figure ABCDEF and a formula for the perimeter ABCDEF. (ii) Find the minimum perimeter (to two decimal places) of ABCDEF enclos

Solve for beta

In the attached problem, I am trying to solve for Beta. We have done other problems that solve for the faces of the triangle but not sure on how to solve for this face.

Right triangles

1) For the given triangles, a = 14.5m, b = 6.03m and alpha = 55.6 degrees. Find theta. Answer in units of degrees. No picture, but use points (0,0), (5,0), (5,7) for triangle one. The x side is labeld a and the angle near the origin is alpha. Now the second triangle is against the y side or against the side from (5,0)

Right triangles

Please give answer and explanation and or steps if needed please to check my work. 1) Draw a right triangle whose sides (not the hypotenuse) have lengths of 8 and 15. Angle A is adjacent to the side of 8, and angle B is adjacent to the side with the length of 15. The tan A=? 2) For the same triangle in question 1 do f

Geometry Construction- To Construct A Congruent Triangle

Step 1. Draw an acute scalene triangle. Label the vertices A, B,C on the interior of each angle. Step 2. Construct a segment congruent to line segment AC. Label the endpoints D and E. Step3. Adjust the compass setting to the length of line segment AB. Place the compass at point D and draw a large arc above line segment D

Geometric Construction : Construct A Median Of A Triangle

Step 1. Draw a scalene triangle and label the vertices, A,B,AND C. Step 2. The side opposite vertex A is line segment BC. Find the midpoint of line segmentBC by constructing the bisector of line segmrnt BC. label the midpoint M. Step 3. Use a straightedge to draw linesegment AM. Line segment AM is the median of triang

Create Construction : Triangles, Arcs and Line Segments

Please create this construction where I can see it. You may have to use a dark marker. Also, make the drawing large. Thank you. Step 1. Draw a scalene triangle and label the vertices ,A,B and C. Step 2. Place the compass at point B and draw an arc that intersect line segment AC in two points. Label the points of inters

Finding a Distance (X) : Triangles and Circles

In the problem I am being asked to solve for the value of X. I have tried setting up right triangles and a mix of right and oblique triangles but have not been able to get the right combination. The value of A is 3.5 and the answer of X is 1.8376. The book gives the answer and we construct the problem.

Gage : Finding a Distance from a Diagram Containing Triangles and Circles

I have tried setting up this problem using right triangles but have not been able to solve it correctly. This problem is not as simple as it looks. It cannot be assumed that the bottom of the circle is tangent to a line drawn across the bottom. Solving for that one triangle is part of the solution. Theta is given as 20 degree

Sine Rule in Triangles

Q: I know the length of two sides of a triangle. I know the degree of the hypotenuse. How do I figure out the length of the base. Example: The length of two sides is 144 inches. The angle is 22.5%. How long is the base?

Area of quadrilateral

The perimeter of a building is 74'by 59'by 103'by 121'. How can the square footage of the building be calculated?

Setting Up Right Triangles

I would like to get some help setting up the right triangles so that I can solve this problem. The dimension of A is 4.75. Please see the attached file for full problem description.

Area of Parallelogram

1. Find the area of parallelogram ABCD, given that AB = BE = ED = 1, and angle ABE = 90 degrees. See attached file for full problem description.

Help with setting up problem

I would like to get assistance in setting up the attached problem so that I can solve it. The value of A is 3.65 and the book gives the answer as 2.2748. thank You