Share
Explore BrainMass

Matrices

Solve

I have attached the problems. 1. Write the augmented matrix for the given system: Answer HTML Editor 2. Use the system in problem #1. Without interchanging any of the rows in the augmented matrix, what is the first value which will be replaced with zero when using the Gaussian Elimination method? A. -1 B

Vectors, matrices, and bases

Please show all work. Thanks. See attached for proper formatting Question 1 Let B={v1,...,vn} be a basis of a subspace V of Rnx1. Let x be the nonzero vector x=a1v1+...+anvn for scalars ai. Let C={x, v2,...,vn}. a) Show that if a1 is not equal to 0 then C is also a basis. b) Show that if a1 =0 then C is not a basis.

Matrix problem

Four theaters comprise the Cinema Center: Cinemas I, II, III, and IV. The admission price for one feature at the Center is $2 for children, $3.50 for students, and $5.75 for adults. Suppose that on a particular Sunday 240 children, 100 students, and 75 adults attended the evening show in Cinema I; 60 children, 240 students, and

Matrices and word problems

A contractor employs carpenters, electricians, and plumbers, working three shifts per day. The number of labor-hours required for carpenters in shift 1 is 40 hours, electricians in shift 1 is 28 hours, and plumbers in shift 1 is 9 hrs. The number of labor-hours required for carpenters in shift 2 is 18 hours, electricians in shif

Matrices and scalars for inverse covariance

I am unclear as to how some scalars have been calculated. I know what the two vectors and the inverse covariance variance matrix are but please could you clarify the operations required to compute into a single number? There is also a set of data on page two that needs computing along with a general explanation of how to do it.

Linear Equations and Matrices

Gretchen Schmidt plans to buy shares of two stocks. One costs $32 per share and pays dividends of $1.20 per share. The other costs $23 per share and pays dividends of $1.40 per share. She has $10,100 to spend and wants to earn dividends of $540. How many share of each stock should she buy? Use the form of " AX=B " equation

Matrices and their Applications

Please help me by showing how these problems on matrices are worked out. (See the Attached Questions File) Answer all questions and show work 1. Find: 2. Find the inverse of: 3. Compute the transpose of A = 4. Introduce slack variables and set up the initial tableau. Do not solve. M

Inverses

In your own words can you explain to me how inverses are used to solve linear systems?

Construct the transition matrix.

4. A city is served by three cable TV companies: Xcellent Cable, Your Cable, and Zephyr Cable. A survey of 1000 cable subscribers shows this breakdown of customers from the beginning to the end of August. Company on Company on August 31 August 1 Xcellent Your Zephyr Xcellent 300 50 50

Matrices and Systems of Equations

1. To raise money, the local baseball teams decided to sell team logo hats (H) and T-shirts (T). The league director decided to hold a contest among the teams to see which team can raise the most money. The contest lasted for 3 weeks. Here are the results of the first 2 weeks. The numbers represent the number of hats and T-shirt

Provide an example of a matrix that has no solution.

Assistance with Matrices Please see attachment. Provide an example of a matrix that has no solution. Use row operations to show why it has no unique solution. Also, some matrices have more than one solution (in fact, an infinite number of solutions) because the system is undetermined. (In other words, there are not enough co

Matrices and Systems of Equations

A group of students decides to sell pizzas to help raise money for their senior class trip. They sold pepperoni for $12, sausage for $10, and cheese for $8. At the end of their sales the class sold a total of 600 pizzas and made $5900. The students sold 175 more cheese pizzas than sausage pizzas. Set up a system of three equatio

Gaussian Elimination

Matrices are the most common and popular way to solve systems of equations. Provide an example of a matrix that can be solved using Gaussian elimination. 1. Show specifically how row operations can be used to solve the matrix. 2. State the solution 3. substitute the solution back into the equation to verify the solution.

Matrix Reflection and Rotation Problems

Given the 2x2 matrices A, B, and C (active transformation matrices) in the x, y plane do the following: (A, B and C are 2x2 matrices given below) 1. Show the matrix is orthogonal 2. Find the determinant to indicate if a rotation or reflection matrix 3. Find the rotation angle or find the line of reflection. A= 1/(2)

Use matrix to represent the weight and length

Animal Growth - At the beginning of a laboratory experiment, five baby rats measured. 5.6,6.4,6.9,7.6, and 6.1cm in length, and weighed 144, 138, 149, 152 and 146g, respectively. a). Write a 2*5 matrix using this information b). At the end of two weeks, their lengths ( in centimeters) were 10.2, 11.4, 11.4, 12.7, and 10.8 and

Matrices, Sets and Relations

Let: D = days of the week {M, T, W, R, F}, E = {Brian (B), Jim (J), Karen (K)} be the employees of a tutoring center at a University U = {Courses the tutoring center needs tutors for} = {Calculus I (I), Calculus II (II), Calculus III (III), Computers I (C1), Computers II (C2), Precalculus (P)}. We define the relation R

Row Equivalent Matrices and Systems of Equations

Determine the solutions of the system of equations whose matrix is row-equivalent to: Give three examples of the solutions. Verify that your solutions satisfy the original system of equations.

Matrix Questions

1.(a) If A is invertible and AB = AC, prove that B = C. (b) Let A =24 1 1 1 135 explain why A is not invertible. (c) Let A =24 1 1 1 135, ¯nd 2 matrices B and C, B 6= C such that AB = AC. 2. (a) If a square matrix A has the property that row 1 + row 2 = row 3, clearly explain why the matrix A is not invertible. (b)

Scalar Multiplication of Matrices

For what value of k does equality hold l 5 2 3 l l 1 2 3 l and l 1 2 4 l l 1 2 4 l l -10 3 4 l =k l -2 3 4 l ? l 3 6 9 l =k l 3 6 9 l l-15 4 5 l l -3 4 5 l l 0 5 0 l

Matrices

Find the two numbers whose sum is 76 and quotient is 18. Evaluate the determinate l 8 0 0 l l -16 7 8 l l 8 4 5 l FInd A-1(power) where A = l 2 4 l l 2 5 l

Matrices and Pivot Positions : Solutions for Ax+0 and Ax=b

In problems 1-4 (a) does the equation Ax = 0 have a nontrivial solution and (b) does the equation the Ax = b have at least one solution for every possible b? 1) A is a 3x3 matrix with three pivot positions. 2) A is a 3x3 matrix with two pivot positions. 3) A is a 3x2 matrix with two pivot positions. 4) A is a 2x4 matrix

Matrices & Vectors: Matrix Products, Ax=B and Linear Combination

Please see the attached file for the fully formatted problems. Compute the products using the row vector rule for computing Ax. If a product is undefined, explain why. 1) 2) 3) 4) let A = and b = . Show that the equation Ax=b does not have a solution for all possible b, and describe the set of all b for which Ax=b does

Row Operations and Matrix Dimensions

Please see the attached file for the fully formatted problems. 6. Perform the row operation (-2) R1 + R2  R2 on the matrix . 8. What are the dimensions of the matrices shown below? a) b) 9. Find