Explore BrainMass

Relativistic Energy

While length decreases between two points at high speeds, the mass of an object will increase. This has a significant effect on what the object is capable of doing. Einstein’s famous relationship for energy is: E=mc^2 This includes both the kinetic energy and rest mass energy for a particle. The kinetic energy of a high speed particle can be calculated from: KE=mc^2-m_0 c^2 The relativistic energy of particle can also be expressed in terms of its momentum in the expression E=mc^2= √(p^2 c^2+ m_0^2 c^4 ) The relativistic energy expression is what is used to calculate binding energies of nuclei and the energy yields of nuclear fission and fusion.

Atomic and Nuclear Physics: Kinetic energy of electron, momentum of proton

An electron and a proton are each accelerated through a potential difference of 10.0 million volts. a) What is the kinetic energy of the electron? What is the kinetic energy of the proton? b) Calculate the momentum (MeV/c) of the proton using classical equations. c) Calculate the momentum (MeV/c) of the proton using relati

Relativistic Velocity and Kinetic Energy

Take the mass of a proton to be 1GeV (=1000MeV). Find the velocity (beta) of a proton whose kinetic energy is: 100 MeV 2 GeV 10 GeV 100 GeV According to Newtonian theory, the kinetic energy (mv^2/2) of a particle is c is equal to mc^2/2, which we now recognize as half of its rest energy. What is the actual (relativistic

Rest Mass and Kinetic Energy

1. Can you express the rest mass of the electron in electron volts. 2. Compute the kinetic energy of a.) an electron b.) a proton traveling at .99c. 3. At what velocity (beta) does the kinetic energy of an electron equal its rest energy?

What Kinetic Energy Must this Beam Proton Have?

In the Tevatron accelerator/storage ring at the Fermi National Accelerator Laboratory, two beams of protons travel in opposite directions each with a total energy of 1 TeV and interact. Since these beams have momenta of equal magnitude but opposite direction, they interact in their center of momentum inertial frame. Hence s2 =

Relativistic Collision

This is problem 12.34 from Griffiths' third edition of Electrodynamics: In the past, most experiments in particle physics involved stationary targets: one particle (usually a proton or an electron) was accelerated to a high energy E, and collided with a target particle at rest (Fig12.29a). Far higher relative energies are o

Momentum and Relativistic Energy

Relativistic Energy and Momentum Learning Goal: To learn to calculate energy and momentum for relativistic particles and, from the relativistic equations, to find relations between a particle's energy and its momentum through its mass. The relativistic momentum and energy E of a particle with mass moving with velocity is g