Share
Explore BrainMass

Energy

Relativistic Electric Potential Difference

For this question you need to know that an electron accelerated through an electric potential difference of V volts acquires a kinetic energy of V eV. (This question is best done by not converting to joules, but by exploiting the fact that mec2 is given as 0.511 MeV). i) What is v/c for an electron? a) Striking the screen

A .15kg block of ice is placed on a horizontal table. It is pushed back compressing a spring .045m, and the spring's constant is 1900N/m. The spring's mass is negligible. The tabletop is 1.2m above the floor. When the spring is released, the block slides off the table and onto the floor. With negligible friction between the block and the table, what is the speed of the block when it hits the floor?

A .15kg block of ice is placed on a horizontal table. It is pushed back compressing a spring .045m, and the spring's constant is 1900N/m. The spring's mass is negligible. The tabletop is 1.2m above the floor. When the spring is released, the block slides off the table and onto the floor. With negligible friction between the

Finding potential energy of conservative force

See attached file for full problem description. Previously it was considered a force of the form f = ixy + jcx^2 + kz^3, and found a value of "c" from the following list such that this was a conservative force. Note: there must really be extra 'constants' in front of each term, with magnitude 1 but the proper units (such as

Classical Mechanics Homework

A block of mass m: I.62 kg slides down a frictionless incline (attached). The block is released a height h : 3.91m above the bottom of the loop. See attached for full problem description.

Bose-Einstein condensate of atoms in a potential well

This exercise is for a Bose-Einstein condensate of indistinguishable atoms which do not interact with each other and are in a 3-dimensional harmonic well. The system is described by the following Hamiltonian (see attached file). This exercise is for a Bose-Einstein condensate of indistinguishable atoms which do not interact w

potential energy and kinetic energy of the stone

A stone of mass 0.62kg is fired upwards at an angle to the ground and with a speed of 5.5 m s-1, as shown in the figure in the attachment. The figure shows the path of the stone until it strikes the ground at point C. Disregard air resistance. Take the acceleration, g, due to gravity to have a value of 9.8 m s-2. Calculate

Power and Energy

A perfectly insulated container contains 70 g of water and has a small heater immersed in water. The temperature of the water is 40 degrees Celsius, and the heater is connected to a 12V battery via a switch. When the heater is switched on, an electric current of 13A flows through its heating element and the temperature of the w

Electricity and Magnetism Problems

Problem A): Consider the railgun shown below: See attached file for full problem description. Consider a 1 kilogram projectile that is accelerated using a 10 meter long, 3 cm wide, railgun with a 1 million amp constant current pulse. 1) Derive an analytic expression for B everywhere in the plane between two infinitely

Simple harmonic motion

See attached file for full problem description. 1. Consider the four equivalent ways to represent simple harmonic motion in one dimension: To make sure you understand all of these, show that they are equivalent by proving the following implications: I-->II--> III--> IV. For each form, given an expression for the constants (C

launching a rocket from the space station

Rocket Propulsion. See attached file for full problem description. A rocket is fired from a space station that is 1000 miles above the surface of the Earth. We take the radius of the Earth to be 4000 miles, so r = 5000 miles. Suppose that the rocket is fired "horizontally". That is, suppose at the time the rocket is launched.

Maximum height of a spring

In problem 13.61(a), if the spring constant k is 30 N/m, and the collar C has 350-g, the maximum height above point B reached by the collar is: a. 0.198 m b. 0.291 m c. 0.306 m d. 0.148 m

Probability of a single-particle state being occupied.

For a system of fermions at room temperature, compute the probability of a single-particle state being occupied if its energy is (a) 1 eV less than mu. (b) 0.01 eV less than mu. (c) equal to mu. (d) 0.01 eV greater than mu. (e) 1 eV greater than mu.

Quickest Path Down a Slide

See the attached file for full problem description, as there are a number of equations that cannot be expressed in plain text. Notes: The Solution uses a different constant of convenience: A) The b and the C of the provided question are related as b = 1/2C^2 B) It takes the negative y below zero, unlike the reversed direct

Calculating Potential, Kinetic, and Total Energies

You are at the top of a 500 meter tower and drop a 5-kg hammer. Calculate the potential and kinetic energies and total energy at the end of each second of free fall and at the moment of impact. Elasped D=5t2 V= a t PE = mgh KE =1/2 mv2 KE + PE mv Time m m/s

One dimensional infinite square well potential.

a) Show that the classical probability distribution function for a particle in a one dimensional infinite square well potential of length L is given by P(x) = 1/L b) Use the result from part (a) to find the expectation value for X and the expectation value for X^2 for a classical particle in such a well.

Pendulum and Spring Questions

____ 1. A simple pendulum, 2.0 m in length, is released with a push when the support string is at an angle of 25 deegree from the vertical. If the initial speed of the suspended mass is 1.2 m/s when at the release point, what is its speed at the bottom of the swing? (g = 9.8 m/s2) a. 2.3 m/s b. 2.6 m/s c. 2.0 m/s d. 1.8 m/

The motion of spring when the length of string shortened

Consider a simple plane pendulum consisting of a mass m connected to a string of length L. After the pendulum is set in motion , the length of the string is shortened at a constant rate: dL/dt = -k The suspension point remains fixed. Compute the following: a) The Lagrangian and Hamiltonian functions b) Compare

Gravitational potential energy

Relative to the ground, what is the gravitational potential energy of a 55.0 kg person who is at the top of the Sears Tower, a height of 443 m above the ground?

Solar Intensity on a space flight

A possible means of space flight is to place a perfectly reflecting aluminized sheet into Earth's orbit and use the light from the Sun to push this solar sail. Suppose a sail of area 6.00 X 10^4 m^2 and mass 6000 kg is placed in orbit facing the sun. The solar intensity of 1380 W/m^2. a. What force is exerted on the sail?

Millikan experiment, Compton effect, photoelectric effect

1. In a Millikan oil drop experiment the terminal velocity of the droplet is observed to be vt = 1.5 mm/s. The density of the oil is = 830 kg/m3 and the viscosity of air is = 1.82 10-5 kg/m s. Use the following equations to find the values below. Calculate the droplet radius. µm (b) Calculate the mass of the drop

Classical mechanics: Motion in two dimension.

1. A river flows due east at 1.00 m/s. A boat crosses the river from the south shore to the north shore by maintaining a constant velocity of 9.0 m/s due north relative to the water. (a) What is the velocity of the boat relative to shore? (b) If the river is 280 m wide, how far downstream has the boat moved by the time it rea

Elastic Collision of Air-Track Glider

An air-track glider with an initial speed of 4.0 m/s has a head-on collision with another glider at rest that is three times as massive. What are the final speed and directions of the gliders if the collision is elastic? I believe the answer is V1 = -2.0 m/s and V2 = +2.0 m/s. I need to see each step and formula to solve this qu