Explore BrainMass
Share

Integrals

Integration Problems

-2 1. Evaluate ∫ (e3x - 4 / ex) dx -3 2. The mean value of a continuous function over a given range is defined as the integral of a function divided by the range. b

Heat transfer and Heat Equations

3-3. Use the methods of vector calculus to derive the general heat conduction equation (Hint: Apply the first law to a volume V with surface S. and use the Gauss divergence theorem to Convert the surface integral of heat flow across S to a volume integral over V.) The cylindrical and spherical coordinate systems are examples o

Integration by Trigonometric Substitution

Please evaluate the following integral using basic formulas. Rewrite the integral to match it to a standard formula, and then solve the integral. Please show each step in the problem. Thank you. ∫dr/r√(r²-9)

Integration Using Formulas : ∫2dx/x√(1-4ln²x)

Please evaluate the following integral using basic formulas. Rewrite the integral to match it to a standard formula, and then solve the integral. Please show each step in the problem. Thank you. ∫2dx/x√(1-4ln²x) integrate

Viscous Fluid Flow : Viscous Drag on the Walls of a Pipe

For laminar flow in the entrance of to a pipe, as shown in figure, the entrance is uniform u=U0, and the flow downstream is parabolic in profileu(r)=C(r0^2-r^2). Using integrla relations, show that the viscous drag exerted on the pipe walls between 0 and x is... Prescribed text book: White, FM, , Viscous Fluid Flow, 2nd Editi

Integration problems

Can you please provide a detailed explanation of how to evaluate these questions? (See attached file for full problem description)

Simpson's Rule

Question 1: What is the exact value of ∫ 0-->2 x^3 + 3x^2 dx ? Question 2: Find SIMP(n) for n = 2, 4, 100. What is noticeable? ---

Integration using left, right, trapezoid, and midpoint rules

(See attached file for full problem description) Definite integrals 1. Show geometrically why int sqrt (2-x^2) dx = pi/4 + 1/2 2. Approximate int sqrt (2-x^2) dx for n = 5 using the left, right, trapezoid, and midpoint rules. Compute the error in each case using the answer to question 1 to compare the errors

To solve several definite and indefinite integrals.

Please see the attachment for the questions. Please solve each problem step by step giving solutions please. SHOW every step getting to the answer. Show substitutions, etc. DO NOT SKIP STEPS PLEASE! Look below for attachments. Adult student asking for help and I learn by the examples you solve. I learn different than ot

Solve

Solve. Show all the steps. If you use software to complete it, explain to me what steps are needed to find the solution, (I can easily input the problem into Maple myself). (see equation in attachment)

Integrate

Solve. Show all the steps. If you use software to complete it, explain to me what steps are needed to find the solution, (I can easily input the problem into Maple myself). (see equation in attachment)

Integration by parts

In this problem I am asked to use integration by parts utilizing the formula: ∫udv = uv - ∫vdu Please show the values of u, dv, du, and v and each of the steps to achieve the solution. This problem may involve more than one sequence in integrating by parts. Thank you. ∫4xsec²2xdx

Integration by parts

In this problem I am asked to use integration by parts utilizing the formula: ∫udv = uv - ∫vdu Please show the values of u, dv, du, and v and the steps to achieve the solution. Then show the final value after substitution of the limits. Thank you. ∫x³lnxdx 1≤x≤e

Surface area of revolving curve

Using the formula for the surface area of a revolving curve about the x-axis: S=∫2πy√(1 + (dy/dx)²)dx throughout a,b Find the area of the surface generated by revolving the curve about the x axis within the given boundaries y=√(x + 1) 1≤x≤5 Please be detailed, showing the compl

Multiple Integration in Cartesian Coordinates

Please see the attached file for the full problem description. --- 1. Transform the given integral in Cartesian coordinates to one in polar coordinates and evaluate the polar integral. : refer to integral 5. 2. Determine the values of the given integrals, where W is the region bounded by the two spheres x^2 + y^2 + z^2 = a^

Polar Coordinates and Change Order of Integration; Volume

Assuming r, θ are the polar coordinates, change the order of integration: ∫-pi/2-->pi/2 ∫0-->a cos θ f(r, θ ) dr dθ Find the volume of the ellipsoid: x^2/a^2 + y^2/b^2 + z^2/c^2 ≤ 1 Let a and b be any numbers such that a^2 + b^2 =1 and f(x,y) be a continuous function of one variable. Perform the change of

Evaluate the Integrals (4 Problems)

Evaluate each of the following integrals: 1. ∫0-->2 6/(5x+2) dx 2. ∫1-->3 e^(-0.4t) dt 3..... 4.... Please see the attached file for the fully formatted problems. Integrate, Integration

Reversing Order of Integration and Sums of Iterated Integrals

Problem 1 and 2: Sketch the region of integration, reverse the order of integration, and evaluate both iterated integrals. ∫0-->2 ∫0-->4-y2 x dx dy ∫0-->pi/2 ∫0-->cosx sin x dy dx Problem 3: When you reverse the order of integration, you should obtain a sum of iterated integrals. Make the reversals and

Integration of Region Bounded by Plane

F(x,y,z)=y ; W is the region bounded by the plane x+y+z=2, the cylinder x^2 + z^2 = 1, and y=0. Integrate the given function over the indicated region W.

Changing the Order of Integration and Finding the Volume

1. Using the integral ∫-1-->1 ∫x^2-->1 ∫0-->1-y dz dy dx a) Sketch the region of integration. Write the integral as an equivalent iterated integral in the order: b) dy dz dx c) dx dz dy d) dz dx dy 2. Find the volume of a wedge cut from the cylinder x^2 +y^2 =1 by planes z=-y and z=0. Please show me t

Integral of a Function

I have a function (see attached). I need to integrate it over m from - infinity to infinity, h from - infinity to infinity. I need to apply a technique such that the integral takes a simple form, easy for integration. The main problem here as you can see is product of terms in the denominator. See the attached file.

Inverse Trigonometric Functions, and Derivatives

7.5 Inverse trigonometric functions Find the exact value of the expression. 1) sin^-1 (SQRT3 / 2) 2) arctan(-1) 3) tan^-1 (SQRT 3) 4) cos^-1 (-1) 5) csc^-1 (2) 6) arcsin(-1/ (SQRT 2) 7) sec^-1 (SQRT 2) 8) arccos(cos 2pi) 9) tan^-1 (tan 3pi/4) 10) cos(arcsin ½) 11) sin(2 tan^-1 SQRT 2) 12) cos(tan^-1 (2) + tan