Explore BrainMass


Surface Area of Revolution

Find the surface area of revolution generated by revolving the region under the curve y=2x on the interval [0,1] about the x-axis.

Congruences, Primitive Roots, Indices and Table of Indices

6. Let g be a primitive root of m. An index of a number a to the base (written ing a) is a number + such that g+≡a(mod m). Given that g is a primitive root modulo m, prove the following... 7. Construct a table of indices of all integers from.... 8. Solve the congruence 9x≡11(mod 17) using the table in 7. 9.

Fundamental Theorem of Calculus: Integrals and Areas

Find the area of the region 1.) y=x- x^2 points (0,1/4) (1,0) 2.) y=1/x^2 points ((1,1) (2, 1/2) Find and evaluate the integral 1.) integral 1 to 0 2xdx 2.) integral 0 to -1 (2x +1)dx 3.) integral 1 to -1 (2t -1)^2 dt 4.) integral 5 to 2 (-3x +4) dx 5.) integral 4 to 0 1/sq rt 2x +1 dx 6.) integral 2

Integral Test for Convergence

1. Solution. Consider the integral By the Integral Test, we know that converges. Why do we choose 2 NOT 1? Since when we choose 1, then ln1=0. So, 2. Solution. Since , we have We know that diverges. So, by comparison t

Wave Equation: D'Alembert's Solution

See the attached file. Given that the general solution to the wave equation in one space dimension is given by where f, g are arbitrary twice continuously differentiable functions deduce that the solution s satisfying the initial conditions and for some function v, is (this is a special case of the so called

Helicoid Integral

Evaluate ∫∫S √(1 + x^2 + y^2) dS where S is the helicoid: r(u,v) = u cos(v)i + u sin(v) j + vk , with 0 ≤ u ≤ 3, 0 ≤ v ≤ 2pi. Please see the attached file for the fully formatted problem.

Flux Integrals

Suppose is a radial force field,... is a sphere of radius...centered at the origin, and the flux integral.... Let be a sphere of radius... centered at the origin, and consider the flux integral... . (A) If the magnitude of... is inversely proportional to the square of the distance from the origin,what is the value of..

Area of Surface and Volume of Solid of Revolution

Find the area of the surface generated when the arc of the curve... between t=0 and y=1 is revolved about: a) the y-axis b) the x-axis c) the line y= -1 Please see attached for all twelve questions (circled problems).

Volume of a Solid of Revolution (2 Problems)

Find the volume of the solid obtained by rotating the region bounded by the given curve about the specific line. (a) y=e^{5x}, y=0, x=0, x=1, about x -axis (b) x=5y-y^2, x=0, about y -axis"

Average Temperature from a Function

In a certain city the temperature at t hours after 9 A.M. is approximated by the function T(t)=44+12sin(pi(t))/12). What is the average temperature of the city during the period from 9 A.M. to 9 P.M.?

Area of a Region Between Two Curves,.,.

Consider the region enclosed by the curves 2y=4sqrt{x}, y=5, 2y+4x=8. [Note: the y-axis is not a boundary of this region.] Decide whether to integrate with respect to x or y. What is the area of the region?

Newton's Law of Cooling : Average Temperature

If a cup of coffee has temperature 95 degrees Celsius in a room where the temperature is 20 degrees Celsius, then according to Newton's Law of Cooling, the temperature of the coffee after t minutes is T(t)=20+75e^(-t/50). What is the average temperature of the coffee during the first half hour?

Evaluate Indefinite and Definite Integrals (9 Problems)

1. Evaluate d/dx (t^3)/(1 + t^2) dt 2. Evaluate d/dx et^2 dt 3. Evaluate the indefinite integral ((t^2)sin(t) + 2sin(t))/(2 + y^2) + e^t dt 4. Evaluate the definite integral sqrt(t)(1 + t) dt 5. Evaluate the indefinite integral (2 - sqrt(x))^r dx 6. Evaluate the indefinite integral (1/x + 1/(x^4) + 1/(x^9) dx 7. Evaluate

Lebesgue Integral and Monotone Convergence Theorem

Let f be a nonnegative integrable function. Show that the function F defined by F(x)= Integral[from -inf to x of f] is continuous by using the Monotone Convergence Theorem. From Royden's Real Analysis Text, chapter 4. See the attached file.

Solve Sequences Used in Given Situation

There is a rope that stretches from the top of Maidwell building to a tree on the racecourse, and the length of this rope is 1km. A worm begins to travel along the rope at the rate of 1cm each second in an attempt to get to the other end. then a strange thing happens... some malevolent deity intervenes to make life even hard

Evaluating integrals

Evaluate the following integrals: (1)The integral of (6sin[2x])/sin(x)dx=____+C (2)The integral of (7-x)(3+[x^2])dx=____+C (3)The integral from 3 to 7 of ([t^6]-[t^2])/(t^4)dt=____+C (4)The integral of (6sin[x])/(1-sin^2[x])dx=____+C

Evaluating Definite Integrals

Thank you in advance for your help. Evaluate the following integrals: (1)The integral from 1 to 7 of 5/t^4 dt (2) The integral from 0 to 1 of (6+[x]sqrt[x])dx (3)The integral from 7 to 8 of 2^t dt (4)The integral from 0 to 1/2 of 4/(sqrt(1-[x^2]))

Definite and indefinite integrals

Thank you in advance for your help. Evaluate the following definite and indefinite integrals: (1)The integral of (2x)/([x^2]+1)dx (2)The integral of [(arctan(x))/([x^2]+1)]dx (3)The integral of sqrt([x^3]+[1x^5])dx (4)The integral of (2+x)/([x^2]+1)dx (5)The integral of (2x)/([x^4]+1)dx (6)The integral from 0 to 2 of (x

Evaluating Integrals via Substitution

Thank you in advance for your help. Evaluate the integrals by making the given substitution: (a)The integral of x(4+x^2)^3dx; (u=4+x^2) (b)The integral of ((sin sqrt[x])/sqrt[3x])dx; (u=sqrt[x]) (c)The integral of e^(3sin(t))cos(t)dt; (u=sin(t))

General Indefinite Integrals

Thank you in advance for your help. Find the general indefinite integrals: (a)The integral of x(1+2x^2)dx (b)The integral of ((x^2)+1+(2/x^2+1))dx