### Slope of a curve

Find the slope of the curve at point A in the graph.

- Anthropology
- Art, Music, and Creative Writing
- Biology
- Business
- Chemistry
- Computer Science
- Drama, Film, and Mass Communication
- Earth Sciences
- Economics
- Education
- Engineering
- English Language and Literature
- Gender Studies
- Health Sciences
- History
- International Development
- Languages
- Law
- Mathematics
- Philosophy
- Physics
- Political Science
- Psychology
- Religious Studies
- Social Work
- Sociology
- Statistics

Find the slope of the curve at point A in the graph.

Find the slope of the line in the graph.

Let y=f(x)=x^2+3 Find Limit of f(x) as x approaches 2 using both graph and table

Define Intermediate-Value theorem Using this theorem, show that there is a root of P(x)=x^3+x^2+x-1 in the closed interval [0,1].

Define a discontinuous function and state the conditions for discontinuity. Find whether the following functions are discontinuous: f(x)=1/x and f(x)=(x)^(1/2) Solve the following:(involves jump discontinuity) A tomato wholesaler finds that the price of newly harvested tomatoes is $16 per pound if he purchases fewer th

Find the radius of convergence of the series in the attached file 'Series.doc'.

If x^2+y^3=y+y^4, then find dy/dx

A portion of a river has the shape of the equation y=1-x^2/4, where distances are measured in tens of kilometres, and the positive y-axis represents due north. the town of Coopers Crossing is situated on the river at its most northerly point. The town of Black Stump is 10 kilometres due south of Coopers Crossing. the town of And

Q.A 2x2xn hole in a wall is to be filled with 2n 1x1x2 bricks. In how many ways can this be done if the bricks are indistinguishable?

I) Find the equation of the tangent to y=x(1-x) at x=1 ii) Find the equation of the normal to y=x(1-x) at x=1 iii) Find the equations of the tangents to y=x(1-x) that pass through (-1, 1/4)

Please see the attached file for the fully formatted problems. Let f: I →ℜ where I is an open interval containing the point c, and let k ∈ ℜ. Prove the following 1. f is differentiable at c with f ′(x) = k iff lim h→0 [f(c+h) - f(c)]/h=k 2. If f is differentiable at c with f ′(c) =

I need to figure out how to explicitly calculate the normalization facotor for the Hermite polynomial as it relates to the harmonic oscillator. N=[(a/Pi)1/2vv!]

Please show all work; don't explain each step. Please DON'T submit back as an attachment.Thank you Sketch the solid bounded by the graphs of the given equation and find its volume by triple integration: z = x^2, y + z = 4, y = 0, z = 0

Please show all work; don't explain each step. Please DON'T submit back as an attachment.Thank you Sketch the solid bounded by the graphs of the given equation and find its volume by triple integration: z = 10 - x^2 - y^2, y = x^2, x = y^2, z = 0

Please show all work; don't explain each step. Please DON'T submit back as an attachment.Thank you Sketch the solid bounded by the graphs of the given equation and find its volume by triple integration: z = y, y = x^2, y = 4, z = 0

Find the radii of gyration x and y( x and y have  above them) of the indicated lamina around the coordinate axes: The lamina of the region bounded by y = x^2 and y = 4; (x, y) = y : is the density symbol

Find the mass and centroid of the plane lamina with the indicated shape and density: The region bounded by the parabolas y = x^2 and x = y^2, with (x, y) = xy : is the density symbol

Find the centroid of the plane region bounded by the given curves. Assume that the density is  = 1 for each region: x = 0, y = 0, x + 2y = 4 : is the density symbol

Find the volume of the solid that is bounded above and below by the given surfaces z = z_1(x, y) and z = z_2(x, y) and lies above the plane region R bounded by the given curve r = g(u): z = 0, z = 3 + x + y; r = 2 sin u

Find the indicated area by double integration in polar coordinates: The area inside both the circles r = 1 and r = 2 sin u

Find the volume of the given solid: The solid lies under the hyperboloid z = xy and above the triangle in the xy-plane with vertices (1, 2), (1, 4), and (5, 2)

Find the volume of the solid that lies below the surface z = f(x, y) and above the region in the xy-plane bounded by the given curves: z = 1 + x^2 + y^2; y = x, y= 2 - x^2

Please show all work; don't explain each step. Please DON'T submit back as an attachment.Thank you. (  ^n_r means that n is on the top of the  and r is on the bottom) Evaluate the iterated integral :  ^1_0  ^(x^2)_0 xy dy dx : is the integral symbol

Please show all work; don't explain each step. Please DON'T submit back as an attachment.Thank you. (  ^n_r means that n is on the top of the  and r is on the bottom) Evaluate the iterated integral:  ^2_0  ^2x_0 (1 + y) dy dx : is the integral symbol

Find the general solution of the differential equation: y'' + 2y' + 2y = 2e^(-x) tan^2 x.

Find the general solution of the differential equation: y'' + y = tan x sec x

Find the general solution of the differential equation: y'' - 2y' + y = (e^x)/x

Verify that y_p , where y_p(x) = sin 2x, is a solution of the differential equation: y'' - y = -5 sin 2x. Use this fact to find the general solution of the equation

Please show all work; don't explain each step. Please DON'T submit back as an attachment.Thank you. Find the general solution of the differential equation: y''' + 2y'' + y' + 2y = 0

Please find the general answer to this particular differential equation: y'''+ y'' = 0