Explore BrainMass

Conservation of Energy

3 problems related to work done and conservation of energy are solved.

(See attached files for full problem description with units and diagrams --- The figure is the velocity-versus-time graph for a 3.90 object moving along the x-axis. Determine the work done on the object during each of the five intervals AB, BC, CD, DE, and EF. --- Part A Use work and energy to find the speed of the 2.

Conservation of Energy

A metal can containing condensed mushroom soup has mass 220 g, height 11.2 cm and diameter 6.38 cm. It is placed at rest on its side at the top of a 3.00 m long incline that is at 26.0° to the horizontal, and is then released to roll straight down. Assuming mechanical energy conservation, calculate the moment of inertia of the

Compression and Speed of Spring

Please assist me with the attached 10 exam review problems. Compression and speed of spring, acceleration of gravity, tension in a tightrope, speed of a wave

Physics: Work and energy, linear momentum, and rotational motion

Problem1: A neutron in a nuclear reactor makes an elastic head-on collision with a carbon atom initially at rest. (the mass of the carbon atom is 12 times that of the neutron.) what fraction of the neutron's kinetic energy is transferred to tha carbon atom? (express your answer in percent) Problem2: A 1400kg rocket sled at re

Charged Spheres and Charges on a Line

1) The figure shows 3 pairs of identical spheres that are to be touched together and then separated. The initial charges on them are indicated. Rank the pairs according to (a) the magnitude of the charge transferred during touching and (b) the charge left on the positively charged sphere, greatest first. The picture s

Inelastic coliision momentum

2. [SJ3 8.P.047.] Tarzan, whose mass is 75.0 kg, swings from a 3.00 m vine that is horizontal when he starts. At the bottom of his arc, he picks up 55.0 kg Jane in a perfectly inelastic collision. What is the height of the highest tree limb they can reach on their upward swing?

Relativity and the Law of Conservation of Energy

You (A) are in a sledge sliding down an inclined plane. (Friction is neglected). An observer (B) at the foot of the plane looks at your initial position at the top of the slide and sees your energy as potential energy (mgh). You (A) slide down to the bottom of the plane and have a velocity of V0. So, the observer sees mgh = m

Determine the Angular Velocity and Final Temperature

1) A boxer is struck by an opponent causing him to rotate about a vertical axis with an angular velocity of one revolution per second while his arms are extend horizontally with a 12-kg glove on each hand. He drops his hands to his sides hoping that the increase in angular velocity will cause the next blow to glance off him. If

Conservation of Potential Energy due to Gravity

Two baseballs, each with a mass of 0.122 kg, are separated by a distance of 950 m in outer space. If the balls are released from rest, what speed (in m/s) do they have when their separation has decreased to 370 m? Ignore the gravitational effects from any other objects.

Finding a Spring Constant

Assuming negligible friction, what spring constant would be needed by the spring in a "b-b gun" to fire a 10g pellet to a height of 100m if the spring is initially compressed 10cm?

Conservation of Energy in a Roller Coaster

Suppose the roller coaster in Fig. 8-29 (attached) (h1 = 32 m, h2 = 13 m, h3 = 20) passes point A with a speed of 3.00 m/s. If the average force of friction is equal to one fifth of its weight, with what speed will it reach point B? The distance traveled is 55.0 m.

Conservation of Energy in a Sliding Block

A 2.0 kg block slides along a horizontal surface with a coefficient of friction µk = 0.30. The block has a speed of v = 1.2 m/s when it strikes a massless spring head-on (as in Fig. 8-18). (a) If the spring has a force constant k = 120 N/m, how far is the spring compressed? (b) What minimum value of the coefficient of s

Conservation of Mechanical Energy

A black of mass m=750g is released from rest and slides down a frictionless track of height h=55.2cm. At the bottom of the track the block slides freely along a horizontal table until it hits a spring attached to a heavy, immovable wall. The spring compressed by 2.64cm at the maximum compression. What is the value of the spring

Shooting the Breeze

Please do not place your response in a .pdf or .cdx format, but Word documents are okay. Thanks! Please see attached for actual problem. Note that I only need help with the last part of this problem! PSS 6.1: Shooting the Breeze Learning Goal: To practice Problem-Solving Strategy 6.1 for projectile motion problems. A stu

Question about Momentum, collisions

There are two main types of collisions that you will study: elastic and perfectly inelastic. In an elastic collision, kinetic energy is conserved. In a perfectly inelastic collision, the particles stick together and thus have the same velocity after the collision. There is actually a range of collision types, with elastic and pe

Adiabatic process and the equation of state.

A sample of 8.02 x 10^-1 moles of nitrogen gas (gamma=1.40) occupies a volume of 2.00 x 10^-2 m^3 at a pressure of 1.00 x 10^5 Pa and temperature 300K. the sample is adiabatically compressed to half its original volume, nitrogen behaves as an ideal gas under these conditions. Show from the adiabatic condition and the equation of

Potential Energy

A 5.00-kg block free to move on a horizontal, frictionless surface is attached to one end of a light horizontal spring. The other end of the spring is held fixed. The spring is compressed 0.100 m from equilibrium and released. The speed of the block is 1.20 m/s when it passes the equilibrium position of the spring. The same

Physics around an Object Towed up and Incline

An object on an incline of 30 degrees is towed up the incline by an applied force of 100N. The coefficient of kinetic friction of mu=.35. The mass of the object is 10.0kg. PART I 1) Draw a sketch 2) Draw a free body diagram 3) What is the weight of the object? 4) What is the acceleration of the object in the y direction?

Momentum in 2 dimensions

The picture (attached) shows two pucks about to collide and one of them after the collision, what is the velocity (Magnitude and Direction) of the .4 kg puck after the collision? (The point of the question is to use the conservation of momentum equations) Two blobs of clay have the initial velocities shown below. The velocit

Energy Theorem and Kinetic Energy: Coefficient of Friction

Question: A 16-kg sled is being pulled along the horizontal snow-covered ground by a force of 24 N. Starting from rest, the sled attains a speed of 2.0 m/s in 8.0 m. Find the coefficient of kinetic friction between the runners of the sled and the snow.

Compressed Springs and Conservation of Momentum

"A spring of negligible mass is compressed between two masses on a frictionless table with upward sloping ramps at each end. The masses are released simultaneously. The mass of M1 is less than the mass of M2. A) Is the force exerted by the spring on M1 greater than, equal to, or less than the force it exerts on M2? B) Is the

Conservation of momentum and kinetic energy: Superball and elastic collisions

A superball has collisions that are nearly perfectly elastic. A superball of mass M is dropped from rest from a height h (where h >> the size of the superball) together with a smaller marble, of mass m; the marble is initially just a little above the top of the superball and remains right over it throughout the fall. The superba

Working with conservation of mechanical energy.

A 12 kg block is released from rest on a 30 degree frictionless incline. Below is a block that can be compressed 2.0 cm by a force of 270 N. The block momentarily stops when it compresses the spring by 5.5 cm. How far does the block move down the incline from its rest position to this stopping point? What is the speed of the bl

Calculating the velocity of a ball compressed into a spring.

In preparation for shooting a ball in a pinball machine, a spring (k= 675 N/m) is compressed by 0.0650 m relative to its unstrained length. The ball (m= 0.0585 kg) is at rest against the spring at point A. When the spring is released, the ball slides (without rolling) to point B, which is 0.300m higher than point A. How fast

Working with 2-D collisions within a laboratory frame.

A particle of mass m and velocity Vo collides elastically with a particle of mass M initially at rest and is scattered through angle, A, in the center of mass system. a) Find the final velocity of m in the laboratory system. b) Find the fractional loss of kinetic energy of m.