### Real Analysis

Show that if K is compact and F is closed then K intersection F is compact.

Explore BrainMass

- Anthropology
- Art, Music, and Creative Writing
- Biology
- Business
- Chemistry
- Computer Science
- Drama, Film, and Mass Communication
- Earth Sciences
- Economics
- Education
- Engineering
- English Language and Literature
- Gender Studies
- Health Sciences
- History
- International Development
- Languages
- Law
- Mathematics
- Philosophy
- Physics
- Political Science
- Psychology
- Religious Studies
- Social Work
- Sociology
- Statistics

Show that if K is compact and F is closed then K intersection F is compact.

Show that if K is compact, then sup K and inf K both exist and are elements of K

Let A be bounded above so that s= sup A exists show that s belong to closure A(A over it bar)

Let x belong to O, where O is an open set.If (x_n) is a sequence converging to x prove that all but a finite number of the terms of (x_n) must be contained in O.

A set F subset or equal to R is closed if and only if every Cauchy sequence contained in F has a limit that is also an element of F.

Show that if sum x_n converges absolutely and the sequence(y_n) is bounded then the sum x_n y_n converges.

1-Show that if sum a_n converges absolutely then sum a^2_n also converges absolutely.Does this proposition hold without absolute converge. 2-if sum a_n converges and a_n>=0 can we conclude anything about sum of sqrt a_n?

Assume a_n and b_n are Cauchy sequences.Use a triangle inequality argument to prove c_n=Absolute value of a_n-b_n is Cauchy.

Let (a_n) be a bounded sequence and define the set S={x belong to R: x< a_n for infinitely many terms a_n}. show that there exists a subsequence(a_nk) converging to s=sup S

Assume (a_n) is a bounded sequence with the property that every convergent subsequence of (a_n) converges to the same limit a belong to R.show that (a_n) must converges to a.

Prove: subsequences of a convergent sequences converge to the same limit as the original sequence

Prove that the sequence defined by X1=3 and X_n+1=1/(4-X_n) converges

Show that lim inf a_n = lim sup a_n if and only if lim a_n exists

Show that if x_n <= y_n <= z_n for all n belong to N and if lim x_n=limz_n=L then lim y_n=L as well

A) Show that if (b_n)-->b,then the sequence of absolute values Absolute value of b_n converges to absolute value of b

Show that limits, if exist, must be unique. In other words, assume lim an=L1 and lim an=L2 and prove that L1=L2

Let xn(smaller n)>=0 for all n belong to N a) if (xn)-->0, show that(sqrt[xn])-->0 b)if (xn)-->x,show that(sqrt[xn])-->x

Using the definition of convergence of a sequence show that the following sequences converge to the proposed limit: 1-lim 1/(6n^2+1)=0 2-lim 2/sqrt[n+3]=0 3-lim (3n+1)/(2n+5)=3/2

1- if A1,A2,A3,...,Am are each countable sets, then the union A1 U A2 U A3...U Am is countable 2- if An is a countable set for each n belong to N,then Un=1(to infinity) An is countable

Proof: if A subset or equal of B and B is countable, then A is either countable, finite or empty.

Prove that if a is an upper bound for A and if a is also an element of A, then it must be that a=sup A

Assume that A And B are nonempty, bounded above and satisfy B subset or equal of A. Show that sup B<= sup A

Let y1=1,and for each n belong to N define y_n+1=(3y_n+4)/4. a-Use induction to prove that the sequence satisfies y_n<4for all n belong to N. b-use another induction argument to show the sequence(y1,y2,y3,...)is increasing.

Given a function f and a subset A of its domain, let f(A) represent the range of f over the set A; f(A)={f(x) : x belong to A}. a-Let f(x)=x^2. If A=[0,2](the closed interval{x belong to R : 0<=x<=2}) and B=[1,4],find f(A) and f(B).Does f(A intersection B)=f(A) intersection f(B) in this case?.Does f(A U B)=f(A) U f(B)?. b-Fi

Please see the attached file for the fully formatted problems. Suppose that is not a perfect nth power, i.e K is not equal to (a) Prove that is not a member of Q, the set of all rational numbers. (b) Infer that the nth root of a natural number is either a natural number or it is irrational.

Antiderivative of: (t5 + 6t3) dt

Show that the sum from 0 to infinity of (1-x)x^n does not converge uniformly on [0,1]. What subintervals of [0,1] does it converge uniforlmly on?

What is the fifth term of the series an = n + an-1' if a0 = -3.

Find an article through newspapers, magazines, professional journals, etc and find at least two examples of data that are best modeled using linear formulae. Describe the importance of each example and why a linear model is appropriate for the data. Note that we are referring to a linear model not simply a time chart where dots

Evaluate Limit[tan (a*theta)/sin(b*theta)] as theta approaches zero.