### Prove that the Series of Functions Converges Uniformly

(See attached file for full problem description with equations) --- 9.3-5 Let {f_n} (from n - 1 to infinity) be a sequence of functions on [a,b] such that (f_n)'(x) exists for every x is an element of {a,b](n is an element of I) and (1) {(f_n)(x_0)} (from n=1 to infinity) converges for some x_0 is an element of [a,b]. (2