### Graph : Finding the Area of a Shaded Region

(See attached file for full problem description with image) The graph below represents the function f(x) = x3 + 2x2 - 5x - 6. Explain how you process the calculation of the shaded region.

Explore BrainMass

- Anthropology
- Art, Music, and Creative Writing
- Biology
- Business
- Chemistry
- Computer Science
- Drama, Film, and Mass Communication
- Earth Sciences
- Economics
- Education
- Engineering
- English Language and Literature
- Gender Studies
- Health Sciences
- History
- International Development
- Languages
- Law
- Mathematics
- Philosophy
- Physics
- Political Science
- Psychology
- Religious Studies
- Social Work
- Sociology
- Statistics

(See attached file for full problem description with image) The graph below represents the function f(x) = x3 + 2x2 - 5x - 6. Explain how you process the calculation of the shaded region.

Integration of exponential: I am having difficulty integrating exponential. I want to compute the indefinite integral of r`(t) where r`(t) is the vector <3, -e(^ -t), 0> The first integration I have is <3t+c1, ------- c3> I am not sure how to integrate the -e^-t ------------------------------------------

I have a double integral of the form I from 0 to 2 and I from 0 to y (4-y^2) dx dy How does one convert this double integral into a triple integral? keywords: integration, integrates, integrals, integrating, double, triple, multiple

Find the area under the normal curve which is shaded on the graph. Use 4 decimal places. See attached file for full problem description.

Consider the nonlinear Fredholm equation where is continuous on [a,b] and is continuous and satisfies a Lipschitz condition: on the set . Show that the integral equation has a unique solution on [a,b] if .

1. The United States Census Bureau mid-year data for the population of the world in the year 2000 was 6.079 billion. Three years later, in 2003, it was 6.302 billion. Answer the following questions. (See attached bmp file) 2. A metal ball, initially at a temperature of 90 C, is immersed on a large body of water at a temperat

Create an integral whereby you are forced to use all four types of integration. Work the problem and explain why each (u-substitution, trig substitution, fractions, parts) are all needed. this must be only one integral, that is it must all be under a singular fraction and cannot be the sum such as integral of lnx+arctanx dx or

Please provide in-depth evaluation of improper integrals using residues theorem.

(See attached file for full problem description with proper symbols and equations) --- A. Evaluate the improper integral: Infinity ∫ (xe^x^2)dx 0 B. Complete the square, then use integration tables to evaluate the indefinite integral: ∫ {(sqrt(x^2 + 6x + 13))/x+3}dx C. Which of the following would

Let f and g be the functions given by f(x) = 1 + sin(2x) and g(x) = e^(x/2). Let R be the shaded region in the first quadrant enclosed by the graphs of f and g. The region R is the base of a solid. For this solid, the cross sections perpendicular to the x-axis are semicircles with diameters extending from y=f(x) to y=g(x).

Let R be the shaded region bounded by the graphs of y=sqaure root of x, and y=e to the power of -3x, and the vertical line x=1. a) Find the area R b) Find the volume of the solid generated when R is revolved about the horizontal line y=1. c) The region R is the base of a solid. For this solid, each cross section perp

Approximate the volume of the solid generated by revolving region formed by the curve y=x^2, x-axis and the line x=2. Volume approximated by concentric shells a) Sketch the reqion y=x^2, x-axis and the line x=2. b) We'll approximate the volume revolving the region about the y-axis. c) partition the interval [0, 2) in x,

∫x^2/√(25-x^2) To solve a given indefinite integral using a suitable trigonometric function substituted. Please see the attachment for the problem.

I have completed the answers to the questions. I just need to have someone confirm that they are correct. Thank you! True/False Indicate whether the sentence or statement is true or false. F 1. Management science is the application of a scientific approach to solving management problems in order to h

Consider the system shown in Fig.1. (attached file) This is a PID control of a second-order plant G(s). Assume that disturbances D(s) enter the system as shown in the diagram. It is assumed that the reference input R(s) is normally held constant, and the response characteristics to disturbances are a very important consideration

Use integration to find the area of the triangle having the given vertices. (0,0) (a,0) (b,c)

-2 1. Evaluate ∫ (e3x - 4 / ex) dx -3 2. The mean value of a continuous function over a given range is defined as the integral of a function divided by the range. b

For what values of p does the integral converge or diverge? What is the value of the integral when it converges? ∫0--> e x^p ln x dx Please explain your answer.

3-3. Use the methods of vector calculus to derive the general heat conduction equation (Hint: Apply the first law to a volume V with surface S. and use the Gauss divergence theorem to Convert the surface integral of heat flow across S to a volume integral over V.) The cylindrical and spherical coordinate systems are examples o

(See attached file for full problem description)

For laminar flow in the entrance of to a pipe, as shown in figure, the entrance is uniform u=U0, and the flow downstream is parabolic in profileu(r)=C(r0^2-r^2). Using integrla relations, show that the viscous drag exerted on the pipe walls between 0 and x is... Prescribed text book: White, FM, , Viscous Fluid Flow, 2nd Editi

Can you please provide a detailed explanation of how to evaluate these questions? (See attached file for full problem description)

Question 1: What is the exact value of ∫ 0-->2 x^3 + 3x^2 dx ? Question 2: Find SIMP(n) for n = 2, 4, 100. What is noticeable? ---

Please see the attachment for the questions. Please solve each problem step by step giving solutions please. SHOW every step getting to the answer. Show substitutions, etc. DO NOT SKIP STEPS PLEASE! Look below for attachments. Adult student asking for help and I learn by the examples you solve. I learn different than ot

You need to choose between making a public offering and arranging a private placement. In each case the issue involves $10 million face value of 10-year debt. You have the following data for each: A public issue: The interest rate on the debt would be 8.5 percent, and the debt would be issued at face value. The underwriti

1. Using the integral ∫-1-->1 ∫x^2-->1 ∫0-->1-y dz dy dx a) Sketch the region of integration. Write the integral as an equivalent iterated integral in the order: b) dy dz dx c) dx dz dy d) dz dx dy 2. Find the volume of a wedge cut from the cylinder x^2 +y^2 =1 by planes z=-y and z=0. Please show me t

7.5 Inverse trigonometric functions Find the exact value of the expression. 1) sin^-1 (SQRT3 / 2) 2) arctan(-1) 3) tan^-1 (SQRT 3) 4) cos^-1 (-1) 5) csc^-1 (2) 6) arcsin(-1/ (SQRT 2) 7) sec^-1 (SQRT 2) 8) arccos(cos 2pi) 9) tan^-1 (tan 3pi/4) 10) cos(arcsin ½) 11) sin(2 tan^-1 SQRT 2) 12) cos(tan^-1 (2) + tan

Evaluate the integral 1) ∫ (sin^3 (x)) (cos^2 (x)) dx 2) ∫ ( sin^4 (x)) (cos^5 (x)) dx 3) ∫ ( sin^6 (x)) (cos^3 (x)) dx 4) ∫ ( sin^3 (mx)) dx 5) ∫ (from 0 to pi/2 on top) (cos^2 (theta)) dtheta 6) ∫ (from 0 to pi/2 on top) (sin^2 (2theta)) dtheta 7) ∫ (from 0 to pi on top) (sin^4 (3t)) dt 8) ∫ (from 0

Evaluate the integral using integration by parts with the indicated choices of u and du. 1) ∫ x ln x dx, u=ln x, du=xdx 2) ∫ theta sec^2(theta) dtheta, u=theta, du=sec^2(theta) dtheta Evaluate the integral 1) ∫ x cos 5x dx 2) ∫ (x)(e)^(-x) dx 3) ∫ re^(r/2) dr 4) ∫ t sin 2t dt 5

7. This problem generalizes the factorial function, as in n!=n(n-1)(n-2)...(2)(1), to more general arguments than just the positive integers. (a) Use integration by parts to show that for any positive integer n, the integral with respect to x from 0 to infinity of xne-x is n! (b) Make a clear case that the integral exists