Purchase Solution

# Integration and continuity

Not what you're looking for?

6.Prove that if g(x) is nonnegative and continuous on [0, 1] and (integral from 0 to 1 of g(x)dx) = zero then g(x)= 0 on [0,1]

7. If f is continuous on [0,1] and if (integral from zero to one of (f(x) x^n)dx)) =0 for n in the Naturals, prove that f(x)=0 on [0,1]/ Hint: The integral of the product of f with any polynomial is zero. Use the Weierstrass approximation
theorem to show that (integral from 0 to one of f^2 (x) dx) =0. I think f^2(x) =(f(x))^2 here.

##### Solution Summary

Integration and continuity are clarified.

##### Free BrainMass Quizzes

This quiz test you on how well you are familiar with solving quadratic inequalities.

##### Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

##### Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

##### Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

##### Probability Quiz

Some questions on probability