Share
Explore BrainMass

Group Theory

Group Theory refers to the study of algebraic structures known as groups. A group is a set of elements and an operation which can combine two elements (of the group) to form a third element. For example, consider the following equation:

s•x = t

s, x and t are all unknown variables. Group Theory is concerned with systems in which the above equation has a unique solution, which is the scenario when only one specific solution set exists. Group Theory does not concern itself with values, such as the specific value of s or t, but rather it deals with finding properties common to mathematical systems which obey a certain set of rules of Group Theory.

The basic rules of an algebraic group are as follows:

-closure: if a and b are in the group, then (s•t) is also in the group

-associativity: (s•t) •r = s•(t•r)

-identity: s•e=e•s = s

-inverses: s•s^(-1) = e

If a particular mathematical system obeys these rules, then the study of that system would form the foundation of Group Theory. Thus, understanding Group Theory is extremely important for the study of systems which are not only limited to Mathematics, but also extend into the study of Physics and Chemistry.

Abstract algebraic operations

Show that the operation * on the real number is defined by a*b = ab + a^2 is neither associative nor commutative. Show working --------------- Show that * on R is defined by a*b = a+b+2 is both associative and commutative Show working --------------- * The movements of a robot are restricted to no change (N), t

Facts About Group Theory

Please help with the following problem. Give 5 interesting facts about group theory (or tensor calculus). Each one need only be 1 to just a few sentences - please list separately and under each fact provide any links to websites or pictures etc. These facts need not be anything original. Thank you for your time and input.

Problems in Group Theory

See the attached file. Suppose that G is a finite group and H is a normal subgroup of G. (i) Explain briefly how the quotient group G/H is defined. [You should explain what the elements of G/H are, how the multiplication is defined, what the identity element is and how inverses are defined. You do not need to prove that the

Rings, Quaternions and Dihedral Groups

1. Define the ring of quaternions H := { a1 + bi + cj + dk : a, b, c, d <- R }, with the relations 1 = 1 and i^2 = j^2 = k^2 = ijk = -1. Define the quaternion absolute value by |a1 + bi + cj + dk|^2 := a^2 + b^2 + c^2 + d^2 . Note H is actually isomorphic to R^4 as a vector space, but it has more structure than

Group and Ring Theory Problems

Group problems. 1. Let G be a group. Given a E G define the centralizer Z(a) := {b E G : ab = ba}. Prove that Z(a) (less than or equal to) G. For which a E G is Z(a) = G? 2. We say a, b E G are conjugate if there exists g E G such that a = gbg^-1. Recall (HW2.8) that this is an equivalence relation. Let C(a) := {b E G : E

Group Theory Proof: Pigeonhole Principle and Inverse Elements

Please help with the following problems involving group theory proofs. Provide step by step calculations along with explanations. a) Prove that if G is a finite group and a is an element of G then for some positive m , a^m is equal to the identity of G. (Use the Pigeon hole principle) b) Prove that if G is a finite group

Two questions in group theory

Problem #1 Prove that Aut(V)= (S3)and that Aut(S3)= S3. Problem #2 If H and K are normal subgroups of a group G with HK = G. Prove that G/(H n K) = (G/H) x (G/K).

Solvable Groups and Chains of Subgroups

A) Prove that if H is nontrivial normal subgroup of the solvable group G then there is a nontrivial subgroup A of H with A normal subgroup of G and A abelian. b)Prove that if there exists a chain of subgroups G1<=G2<=.....<=G such that G=union(from i=1 to infinity)of Gi and each Gi is simple, then G is simple Part a of thi

Sylow p-Subgroups, Conjugacy and Abelian Groups

A) Let G be a group of order 203. Prove that if H is normal subgroup of order 7 in G then H<=Z(G). Deduce that G is abelian in this case. b)Let P be a normal Sylow p-subgroup of G and let H be any subgroup of G. Prove that P intersect H is the unique Sylow p-subgroup of H. c)Let P be in Syl_p(G) and assume N is a normal su

Group Action, Conjugates and Conjugation

Consider the group action of on itself via conjugation. ={ }, and a) Find all the elements of that are fixed by the element r. b) Let G be a group, and consider the action of G on itself via conjugation. Let g to G. Prove or disprove that the set of all elements of G that are fixed by g is a subgroup of G. c) Find a

Groups, Order and Commutativity

1. If x is an element of a group and x is of order n then the elements 1, x, x^2,...x^n-1 are distinct (don't know how to show this!) 2. Let Y=<u,v/u^4=v^3=1, uv=v^2u^2> Y here is a group show a) v^2=v^-1 b) v commutes with u^3 c) v commutes with u d)uv=1 e)u=1, deduce that v=1 and conclude that Y=1

Nilpotent Groups

Let G = UT (n,F) be the set of the upper triangular n x n matrices with entries in a field F with p elements and 1's on the diagonal. The operation in G is matrix multiplication. (a) Show that G is a group (b) Show that G is a finite p-group (c) Consider the upper central series of G: 1 = Z_0 (G) <= Z_1 (G) <= Z_2 (G) <

Formation of a Group under an Associative Product

Question: Let G be a nonempty set closed under an associative product, which in addition satisfies: (a) There exists an e in G such that e.a = a for all a in G. (b) Given a in G, there exists an element y(a) in G such that y(a).a = e. Then G is a group under this product.

Group Theory - Group of Even Order

Modern Algebra Group Theory (XXII) Group of Even Order If G is a group of even order, prove it has an element a which is not equal to e satisfying a^2 = e. The fully formatted problem is in the attached file.