### Polynomial Equations : Complex Solutions, Conjugates and Shift Operator

Prove that if p is a polynomial with real coefficients, and if is a (complex) solution of P(E)z = 0, then the conjugate of z, the real part of z, and the imaginary part of z are also solutions. Note: This is from a numerical analysis course, and here P(E) refers to a polynomial in E, the "shift operator" for a sequence.