### Complex Variables Convergence of Summations

A) Prove that sum(z^n/n) converges at every point of the unit circle except z=1 although this power series has R=1. b) Use partial fractions to determine the following closed expression for c_n c_n=((1+sqrt5/2)^n+1 - (1-sqrt5/2)^n+1)/sqrt5 Ps. Here c_n are Fibonacci numbers defined by c_0=1, c_1=1,.... c_n=c_n-1 + c_