Explore BrainMass

Calculus and Analysis

Word problem

Dont really want you to give me answer, just thoery on how to complete these type of problems. Word problem with calculus Thank You (See Attached)

Calculus/ For OTA 103997 only

Please respond with a Microsoft Word document. Thank you. Please see attachment for actual questions and full formulas. 1. Decide whether Rolle's Theorem can be applied to on the interval [-1,3]. If Rolle's Theorem can be applied, find all the values, c, in the interval such that . If Rolle's Theorem cannot be a

Series of Calculus Questions

Please respond with a Microsoft Word document with the answers written in standard text. Thank you. Series of Various Calculour Questions Attached.


Using covolution, find the solution of the differential eq y"+4y'+13y=(1/3)e^(-2t)sin3t y(0)=1, y'(0)=-2

Forced harmonic oscillator

Consider the forced harmonic oscillator: y'' + by' + ky = g(t) + y0 where the forcing is made up of two parts, constant forcing (y0) and forcing (g(t)) that changes over time. a) Let w(t) = y(t) - y0/k. Rewrite the forced harmonic oscillator equation in terms of the new variable w. b) In what ways are the solutions of the t

Homogeneous Solutions and Differential Equations

Given that the differential equation y^n + p(x)y' + q(x)y = r(x) attached has three solutions of sin x, cos x and sin 2x. Find yh (yh is the corresponding homogeneous solution). See attachment for better formula representation.

Wronskian Solution and Differential Equations

Given that the differential equation y^n + p(x)y' + q(x)y =0 has two solutions x^2 -x and x^3 - x. Use the Wronskian to find p(x). See attachment for better formula representation.

Calculus Help

I attached the problems that I would like you to do. I have already completed these problems by myself, but would like to see if I did them correctly and would like to compare your answers with mine so that I know which problems I mastered and which I need to study up on. Thank you.

Vector Functions to Partial Derrivative

Attached is more clear 1. Distance from a a point to a curve: Find the shortest distances between the point (1,2,1) and a point on the curve r(t)= (1/t*i)+(lnt(t)*j)+(sqrt(t)*k) 2. Distance from a point to a curve: Find the maxmium distances from the point (1,2,-1) to a point on the curve of intersection of the plane z=(

Laplace Transform

Find the inverse Laplace transform of (s^3+s^2+2/s) / [s^2(s^2+3s+2)] Using this (or otherwise), Find the solution of the equation y"+3y'+2y = 1-t Find the transform of the following functions: f(t) = (1+t^2)[u(t-1)-u(t-2)] where u(t) is the unit step function. f(t) = sin(t) for 0<t<Pi and f(t)=0 for Pi<t<2*Pi

Diff. EQ

Solve for variable y in terms of t W/ given initial condition: dy/dt + 4y = 40sin3t y(0)=6

Differential Equations

Solve y in terms of t with initial conditions given. a.) (d^2)y/dt^2+3dy/dt+2y=24e^-4t y(0)=10 y'(0)=5 b.) (d^2)y/dt^2+6dy/dt+9y=0 y(0)=10 y'(0)=0

Ln 2 = 1 - 1/2 +1/3 - 1/4 ...

Use 1) sum of (x ^ (n +1))/ (n +1 ) converges uniformly on [-1, 0] 2) sum of x ^ n converges uniformly on (-1, 0] 3) sum of x ^ n = 1/(1-x) to show that ln 2 = 1 - 1/2 + 1/3 - 1/4 ...

Find the Initial Value

4. For the initial value problem dy/dx = 3y^(2/3), y(2) = 0, (a) does existence uniqueness Theorem 1 imply the existence of a unique solution? Explain. (b) Which of the following functions are solutions to the above differential equation? Explain. (b_1) y(x) = 0 (b_2) y(x) = (x - 2)^3 (b_3) y(x) = (x - alpha)^3, x <

Derivative Question - Algebraic Function

This is from a Trig/Calculus course...Explain FULLY: If F(x) = x^4 - 2x^3 + 4x^2 - 9 Note: ^ indicates exponant. Find F prime of x. It will be a derivative. I need every step explained clearly as I have a bet riding on this! I need to be able to show every step in order to win my bet.