Explore BrainMass

Explore BrainMass

    Analysis of Covariance

    Covariance is a measure of how much two variables change together and how strong the relationship is between them. Analysis of covariance is a general linear model which blends ANOVA and regression. It evaluates whether population means of a dependent variable are equal across levels of a categorical independent variable, while statistically controlling for the effects of other continuous variables that are not of primary interest. There are known as covariates. There, when the analysis of covariance takes place, we adjust the dependent variable means to what they would be if all groups were equal on the covariates.

    Analysis of covariance can be used to increase statistical power by reducing the within group error variance. For one to completely understand this concept, it is necessary to understand the test used to evaluate differences between groups, the F-test. This test is computed by the following:

    F = MSbetween/MSwithin

    I this value is a larger than the critical value, we conclude that there is a significant difference between groups. Unexplained variance includes error variance, as well as the influence of other factors. When we control for the effect of covariance on the dependant variable, we remove it from the denominator making F larger, thereby increasing your power to find a significant effect if one exists. 

    © BrainMass Inc. brainmass.com April 21, 2024, 3:57 am ad1c9bdddf

    BrainMass Solutions Available for Instant Download

    Analysis of Covariance

    The topic concern online students and their satisfaction of a course. I am using Learner Characteristics and Technology Skills as the two independent variables and participation as the independent variable. Dependent variables are the covariates. I need to conduct ANCOVA that shows both the first independent variable as we

    Mock ANCOVA output

    Analysis of Covariance. Using an area of interest (Organizational leadership), identify one independent (organizational commitment) and two dependent variables (tenure) and (leadership training received), such that the dependent variables would likely be covariates. Assume an ANCOVA was conducted that shows both the first i

    Using Anova or Ancova to analyse the growth of Northern Pike

    Growth of Northern Pike in two lakes The problem Northern Pike are voracious piscivores found naturally in the majority of lakes of southern Québec and Ontario. However, in some small lakes there are no pikes unless they have been introduced by man. Such introductions are often favored by fishermen, although we now realize