### Multivariable Calculus : Iterated Integral

( f ^n_r means that n is on the top of the f and r is on the bottom) Evaluate the iterated integral: f ^(pi/2)_0 f ^(pi/2)_0 cos x sin y dy dx f: is the integral symbol

Explore BrainMass

- Anthropology
- Art, Music, and Creative Writing
- Biology
- Business
- Chemistry
- Computer Science
- Drama, Film, and Mass Communication
- Earth Sciences
- Economics
- Education
- Engineering
- English Language and Literature
- Gender Studies
- Health Sciences
- History
- International Development
- Languages
- Law
- Mathematics
- Philosophy
- Physics
- Political Science
- Psychology
- Religious Studies
- Social Work
- Sociology
- Statistics

( f ^n_r means that n is on the top of the f and r is on the bottom) Evaluate the iterated integral: f ^(pi/2)_0 f ^(pi/2)_0 cos x sin y dy dx f: is the integral symbol

Question: Solve by triple integration in cylindrical coordinates. Assume that each solid has unit density unless another density function is specified: Find the volume of the region bounded above by the spherical surface x^2 + y^2 + z^2 = 2 and below by the paraboloid z = x^2 + y^2.

Compute the value of the triple integral   _T f(x, y, z) dV: f(x, y, z) = xyz; T lies below the surface z = 1 - x^2 and above the rectangle -1*x*1, 0*y*2 in the xy-plane. : is the integral symbol

Please show all work; don't explain each step. Please DON'T submit back as an attachment.Thank you. ( ^n_r means that n is on the top of the and r is on the bottom) Sketch the region of integration, reverse the order of integration, and evaluate the resulting integral: ^1_0 ^1_y

Find all the roots of x^2 + 3x - 4 in Z (integers) AND Z6 (integers modulo 6) AND Z4 (integers modulo 4)

See attached Word file.

Please see the attached file for full problem description.

See attached word file.

Show that there are exactly four distinct sets of integers which satisfy the attached equations:

Given dy/dx= -xy/(ln y), where y>0 find the general solution of the differential equation What solution satisfies the condition that y=e^2 when x=0... express in y=f(x) Why is x=2 not in the domain found from that?

20) If the function f is continuous for all real numbers and lim as h approaches 0 of f(a+h) - f(a)/ h = 7 then which statement is true? a) f(a) = 7 b) f is differentiable at x=a. c) f is differentiable for all real numbers. d) f is increasing for x>0. e) f is increasing for all real differentiable ans is B. Explain

Evaluate the integral in the attached file "Arc Length.doc" for arc length (L). The intent is to solve for a numerical answer and the values for a, b, and t are all constant.

Can you show me the solution to this integral? See attached file for full problem description.

Can you please show all the working to solve the attached integral?

Please see the attached file for full problem description. --- Use a transformation to evaluate the double integral of f(x,y) given by f(x,y)=cos(2x+y)sin(x-2y). over the square region with vertices at (0,0) P(1,-2) Q(3,-1) & R(2,1) (My notes from class-uses substitution, change of variables) Solution. Letting

Can anyone show me the working between the integral in the enclosed file & the answer of A = 4/3

Can anyone please show me how to solve these double integrals, with a step by step approach. I know the answer is 63 - but Ive tried so many times & I don't know where I'm going wrong. upper limits are 1&y=2 x+4y^2 dydx + lower limits are -2&y=-x upper limits are 4 & y=2 x+4y^2 dydx lower limits ar

Use a transformation to evaluate the double integral of f(x,y) given by f(x,y)=cos(2x-y)sin(x+2y) over the square region with vertices at (0,0) (1,-2) (3,-1) & (2,1) (My notes from class-uses substitution, change of variables) I have let u=(2x-y) & v=(x+2y) using substitution (change of variables)

In some populations, the amount of births is directly proportional to the population at any given point in time and the amount of deaths is directly proportional to the square of the population at any given point in time. 1. Write an equation that models the change in a population that fits the above description. Make sure t

Please see the attached file for full problem description.

Using: d tan^-1 (x/y)=(y dx - x dy)/(x^2 + y^2), and ½ d ln(x^2 + y^2)=(x dx + y dy)/(x^2 + y^2) find integrating factors for, and solve, the following equation: (2x^(2)y + 2y^3 - x) (dy/dx) + y=0

Laplace Transform Application of Complex Inversion Integral Formula (Bromwich's Integral Formula) Problem:- Find the Laplace Transform of the function F(t) = (1 - e^(

See word file for problems regarding the ladder method of integration by parts

Show that (7x/x^2 + 5) + (4/3x+15) - (5/6x-24) = (45x^3-15x^2-825x-35)/((6x^2+30)(x^2+x-20)) then use that information to determine S=integral S(45x^3-15x^2-825x-35)/((6x^2+30)(x^2+x-20)) dx.

Please see the attached file for the fully formatted problems. Partial fraction decomposition is a technique used to convert a fraction with a polynomial numerator and a polynomial denominator into the sum of two or more simpler fractions. It eases integration by reducing it to the sum of integrals, each of which will most l

1. The shaded region R, is bounded by the graph of y = x^2 and the line y = 4. a) Find the area of R. b) Find the volume of the solid generated by revolving R about the x-axis. c) There exists a number k, k>4, such that when R is revolved about the line y = k, the resulting solid has the same volume as the solid in par

See attachment

Integrate the following: y = (x - x^2)/(x^(1/6))

Please see the attached file for the fully formatted problem. Integrate:

Use an iterated integral to find the area of the region: y = 1 /sq root (x - 1)