Share
Explore BrainMass

Real Analysis

Real Analysis : Proof of a Constant

Please see the attached file for the fully formatted problem. Let > 0. Prove that log x  x for x large. Prove that there exists a constant C such that log x  C x for all x 2 [1, 1 ), C ! 1 as ! 0+, and C ! 0 as ! 1 Please justify all steps and be rigorous because it is an analysis problem. (Note: The probl

Real Analysis: Mean Value Theorem

Let r e-1/x2 i(x) = i 0 x740 x = 0 Show that the nth derivative of 1(x) exists for all n E N. Please justify all steps and be rigorous because it is an analysis problem. (Note: The problem falls under the chapter on Differentiability on IR in the section entitled The Mean Value Theorem.)

Real Analysis Problem

The inverse cosine function has domain [-1,1]and range [0, pi]. Prove that (cos^-1)'(x) = -1/ sqrt(1-x^2). This needs to be proved from a real analysis point of view not a calculus.

Composition Series

Write a composition series for the rotation group of the cube and show that it is indeed a composition series.

Series Convergence: Two-sided Estimator

Please see the attached file for the fully formatted problems. A simple technique to estimate values of the finite sums of reciprocals to natural numbers raised to positive power and to define if corresponding infinite series converge. Deduce two-sided estimator for the sums of the positive powers (p) of reciprocals to nat

Limits of Functions

Evaluate the following limits using the epsilon - delta definition and the limit theorems: a) lim {x -> 0} (x^2 + cos x)/(2 - tan x) b) lim {x -> sqrt(pi)} ((pi - x^2)^(1/3))/(x + pi)

Functions: Limits

Using the definition of a limit (rather than the limit theorems) prove that lim {x -> a+} f(x) exists and find the limit in each of the following cases a) f(x) = x/|x|, a = 0. b) f(x) = x + |x|, a = -1. c) f(x) = (x - 1)/(x^2 - 1), a = 1. In which cases do lim {x -> a-} f(x) and lim {x -> a} f(

Real Analysis Problem

I need a correct and concise solution. If the answer is not 100% correct, I will ask for my money back! We just finished integration and are done with a first course in analysis, i.e. chapters 1-6 of Rudin. We are also using the Ross and the Morrey/Protter book. The Problem: f : R --> R , f ' ' ' ' continous.

Real Analysis Problem

We have just finished up integration and are done with a first course in analysis, so chapters 1-6 of Rudin. We are also using the Ross and Morrey/Protter book. Please answer question fully and clearly explaining every step. Any solution short of perfect is useless to me. So if you are not 100% sure whether your answer is right,

Real Analysis Problem

We have learned Rolle, Lagrange, Fermat, Taylor Theorems in our Real Analysis class and we have finished differentiation. We just started integration. In this problem we are not supposed to use any material we haven't learned, ie integration. We are using the books by Rudin, Ross, Morrey/Protter. ****************************