Share
Explore BrainMass

Number Theory

Modular Arithmetic

5^1367 mod 50174 How would I solve this? Would I need to use square and multiply?

Irreducible Polynomials

I need a detailed solution for this exercise. For this problem, "k" represents an arbitrary field. Please see attachment.

Fundamental Operations on Polynomials

Solve the following questions involving fundamental operations on polynomials: A) find p(x)+4q(x) p(x)=3x^5+70x^3-67x^2+3 q(x)=3x^3+56x^2-19 B) Find P(-1/2)if P(x)=x^4=3x^2+2 C) If P(y)=10y^2+4 Q(y)=y^3-5y^2+3y+7 Find 3P(y)+Q(y) D) (x^2+y^2+4z^2+2xy+4yz+4zx)+(x^2+4y^2+4z^2-4xy-8yz+4z

Operations with Polynomials

1.Add the polynomials. (x^3+4x^2+2x-3) + (-x^3-3x^2-3x+2) 2.Perform the indicated operation. (2 - 3x + x^3) - (-1 - 4x + x^2) 3.Find the product . -2ab*7a^5*b^4 4.Find the opposite of the polynomial. -2r^2 - r + 3 5.Multiply: (-4 - a)^2 6.Find the quotient and the remain

Maclaurin Polynomials

Throughout this exercise, g(x) = cos x and Pn(x) (n is a subscript) is the Taylor (Maclaurin) polynomial of order n based at x = 0. a) Find formulas for Pο (ο is a subscript) through P6 (6 is a subscript), the Maclaurin polynomials through order 6 for g based at x = 0. Please label on graph b) Is g odd, even,

Taylor Polynomial

First, find the Taylor polynomial Pn (n is a subscript) of order n for the function f with base point Xο (ο is a subscript). Then plot both f and Pn on the same axes. Choose the plotting window to show clearly the relationship between f and Pn. f(X) = sin X + cos X, n = 4, Xο (ο is a subscript) = 0

Arithmetic

6.5 A half adder is a combinational logic circuit that has two inputs, x and y, and two outputs, s and c, that are the sum and carry-out, respectively, resulting from the binary addition of x and y. (a) Design a half adder as a two-level AND-OR circuit. (b) Show how to implement a full adder, as shown in Figure 6.2a, by usin

Polynomials and Scientific Notation

Need the attached six (6) problems solved, so that I can then solve other similar problems. Instructions are in the attached word document. Subtracting polynomials. Show all steps in arriving at the answer. a. (t^2 - 6t + 7) - (5t^2 - 3t - 2) Multiplying polynomials. Show all steps in arriving at the answer.

If R is a unique factorization domain and if a and b in R are relatively prime (i.e.,(a,b) = 1), whenever a divides bc, then a divides c. That is, if R is a unique factorization domain and if a and b in R are relatively prime (i.e., (a,b) = 1), whenever a divides bc then a divides c.

If R is a unique factorization domain and if a and b in R are relatively prime (i.e.,(a,b) = 1), whenever a divides bc, then a divides c. That is, if R is a unique factorization domain and if a and b in R are relatively prime (i.e., (a,b) = 1), whenever a divides bc then a divides c.

Gcd of polynomials

Let f(x) = x^4+2x^3−x^2−4x−2 and g(x) = x^4+x^3−x^2−2x−2. Find the greatest common divisor d(x) of f(x) and g(x) in Q[x]. Find polynomials a(x), b(x) in Q[x] such that d(x) = a(x)f(x) + b(x)g(x).

Palindromic Polynomials with Z Module Coefficients

I need to do some research on the properties of palindromic polynomials with Z(n) coefficients. I would like information/explanation of polynomials with Z(n) coefficients. I would like to see examples of polynomials with Z(1), Z(2), Z(3), Z(4), Z(5) and in general Z(n) coefficients. Also, I would like to see some examples of

Prove that L_n = L_(n - 1) + L_(n - 2)

The Lucas numbers L_n are defined by the equations L_1 = 1 and L_n = F_(n+1) + F_(n-1) for each n > or = 2 Prove that L_n = L_(n-1) + L_(n-2) (n > or = 3) See attached file for full problem description.

Vector Spaces and Subspaces

2. Use Theorem 5.2.1 to determine which of the following are subspaces of R3. Thm 5.2.1: If W is a set of one or more vectors from a vector space V, then W is a subspace of V if and only if the following conditions hold. (a) If u and v are vectors in W, then u + v is in W. (b) If k is any scalar and u is any vector in W,

Z-Modules of Polynomials, Basis and Linear Combinations

Please see the attached file for the fully formatted problems. Let P3 = ( it is set of all polynomials with coefficients in Z that are at most of degree 3.) Let A = and B = where , that is  = . (a) Verify that A and B are bases of the Z-module P3. (b) Compute the change of basis matrices PAB (from the

Polynomials : Algebraic Division and Complex Roots

The polynomial: 4x^4 - 6x^3 + 4x^2 - 3x + 1 has the real roots at x = 1 and x = 1/2 and two complex conjugate roots. (a) by the process of algebraic division and then solving a quadratic equation, find the complex roots. (b) Write down all the factors of the 4th degree polynomial 4x^4 - 6x^3 + 4x^

Palindromic and Reciprocal Polynomials

5. - Show that the product of a polynomial and its reciprocal polynomial is a palindromic polynomial. Hint Consider the zeros. Definition of reciprocal polynomial of f(x) for the book Introduction to the Theory of Error-Correcting Codes, by Vera Pless, 3rd edition Page 58 and 59. If f(x) is a polynomial of degree m, th

Primitive Irreducible Polynomials

Please can you explain primitive irreducible polynomials and please give examples. Please see the attached file for the fully formatted problem.

Palindromic Polynomials

Problem #4 A palindromic polynomial is such that for all . Now we use the result in problem #3 to find an irreducible palindromic polynomial of degree 6 over . First, we compute all reducible ones. Now we consider the palindromic . From problem #3(c), is irreducible. I am sorry but I do not understand the definit

Irreducible Palindromic Polynomials of Even Degrees

Show that if a palindromic polynomial of degree n is irreducible over F, then n must be even. Hint Experiment with palindromic polynomials of odd degree Please, can you explain what does palindromic polynomials means? Give me examples palindromic polynomials with even and odd degree.