### Parametric Equations

Find an equation in x and y for the curve given by the parametric equations x=e-t,y=-2t,t in R.

- Anthropology
- Art, Music, and Creative Writing
- Biology
- Business
- Chemistry
- Computer Science
- Drama, Film, and Mass Communication
- Earth Sciences
- Economics
- Education
- Engineering
- English Language and Literature
- Gender Studies
- Health Sciences
- History
- International Development
- Languages
- Law
- Mathematics
- Philosophy
- Physics
- Political Science
- Psychology
- Religious Studies
- Social Work
- Sociology
- Statistics

Find an equation in x and y for the curve given by the parametric equations x=e-t,y=-2t,t in R.

25*y^2 + (10/sqrt2)*y*z + 4*z^2 - 50 = 0 I know when compared with the standard 2nd degree conic equation that this is an ellipse rotated 16.24 degrees. My question is , How do I put this equation in the standard form of an ellipse equation? ie: y^2/a^2 + z^2/b^2 = 1

Eliminate t to determine the type of conic from a pair of parametric equations. See attached file for full problem description.

7. Find the equation of the ellipse whose center is (-3,1); vertex (-3,3) and focus (-3,0). 8. Graph by hand the curve whose parametric equations are given and show its orientation. x=t+3 y=2t^2 0<=t<=5 9. Find the two different parametric equations for the rectangular equation y=x^2 +2

Suppose z= phi(&) and w=psi(&) are one-to-one analytic maps from the unit disc D(0,1) onto the regions G_1 and G_2. Set phi(0)=z_0 and psi(0)=w_0. Let 0<r<1 and omega_1(r)=phi(D(0,r)), omega_2(r)=psi(D(0,r)). Assume f: G_1->G-2 be holomorphic map with f(z_0)=w_0. Show that f(omega_1(r)) is contained in omega_2(r)

Use Green's Thereom to find the area enclosed by the curve: {abs(x)}^(1/2) + {abs(y)}^(1/2) = 1. It is important that you solve this problem using Green's Method because that is how my professor prefers it. I know that you have to make the above statement true and switch to a different set of coordinates. Something al

1 Find an equation of the ellipse with the center (0,0) , vertical major axis 14 and minor axis 10. 2 Find an equation for the hyperbola with the focus (11,12) and asymptotes 4x-3y=18 and 4x+3y=30. 3 Find the arc length of the curve given by x = sin t - cos t, y = sin t + cos t, pi/1 <= t <= 3pi/4

1 Express the polar equation r^2 = 2cos2Θ in rectangular form. 2 Find the total area enclosed by the graph of the polar equation r = 1 + cos2Θ

Let O be the upper half of the unit disc D. Find a conformal mapping f: O->D that maps {-1,0,1} to {-1,-i,1}. Find z in O with f(z)=0

Sketch the region bounded by the graph of the functions and find the area of the region 1) f(x) = - x^2+ 4x + 2, g(x) = x + 2 2) f(y) = y(2 - y), g(y) = -y 3) f(x) = 3^x, g(x) = 2x + 1 keywords: integration, integrates, integrals, integrating, double, triple, multiple

Dh /dt = 2 + 0.5/t^0.5 where t is the time in years (t > 0) and h is the height of the tree in feet. How much does the tree grow between the fourth and ninth years?

On what interval does the function f(x) = -x^3 + 3x^2 + 24x + 5 concave up? keywords: concave-up

Determine the absolute minimum of the function f(x) = x^3 - 3x - 1 on the interval [0, 4]. Make sure to show all work that is involved.

________________(____)________ -5 -4 -3 -2 -1 0 1 2 3 4 5 How would I write this in equality form and/or in interval form? x + 2 =+2x is what I came up with. The graph indicates that the solution is between 0 and 2, where 2 is included in the solution and 0 is not.

Given an ellipse, could you please explain AND show on a piece of paper exactly why the distance between the origin and vertex equals a? Please don't just show me how to derive the equation for an ellipse. I have that. And please don't just draw a picture without explaining it. Thanks!

Show that a rule is a metric. See attached file for full problem description.

Prove that every finite subset of a metric space is compact.

1. If f(x) = -3x + 7, find f(a + 1). 2. Explain how we can obtain the graph of -|x + 4| + 2 from the graph of |x|. 3. If f(x) = 3x - 4 and g(x) = x - 1, find (f - g)(x) and f(g(x)). 4. Find the inverse of the function f(x) = 2x + 8.

Two vibrations, x1 = 3 sin(10t + pi/6) and x2 = 2 cos(10t - pi/6) where t is in seconds, are superimposed. determine the time at which the amplitude of the resultant vibration, x1 + x2, first reaches a value of 2.

Vertex(-2,1) and focus (-2,-3)

Please see attached file. If lines A, B and C are parallel and length a=2.8, c=3, b=3.2, what is length d? a. 1.88 b. 3.43 c. 3 d. 3.2.

See attached file for the problem.

G(x) =ksqrt(x+1) if 0<=x<=3 mx+2 if 3<x<=5 Find the values of k and m so that g'(3) exists.

From fire tower A, a fire with bearing N 75° E is sighted. The same fire is sighted from tower B at N 49° W. Tower B is 55 miles east of tower A. How far is it from tower A to the fire?

Using one of the tests for convergence (comparison, limit, integral, nth term, etc.), show whether the following series converges or diverges: ∞ ∑ (e^n)/ 1 + (e^2n) n=1

Please give a detailed solution to the attached problem.

Show that the alternating series converges and use the partial sum S9 o estimate the error made as an approximation to S of the series.

Let X be a space which has a universal covering space. If (X1, p1) is a covering space of X and (X2, p2) is a covering space of X1, then (X2, p1p2) is a covering space of X. See the attached file.

Please see the attached file for the fully formatted problems.

Please see the attached file for the fully formatted problems. Please do 1-47 odd.