Explore BrainMass

Explore BrainMass

    Derivatives

    BrainMass Solutions Available for Instant Download

    Polar Coordinates : Solving Derivatives and Circuit Problem

    Please see the attached file for full problem description. (a) By making the substitution y = z/x^4, or otherwise, reduce the equation dy/dx +4y/x =sinx/x2 to an equation in which the variables are separable. Solve the equation if y = 0 when x = pi/2 (b) In a circuit di/dt=K(E-Ri) and i=0 when t=0. Find i in

    First Principle in Evaluating Derivatives

    (A) Find and simplify the difference quotient for G(X)=1/x^2. HINT: After finding the difference quotient, simplify by using an LCD to combine the fractions. (B) Using the answer above, find the value of the difference quotient at x=1 with an h=.1 C) Sketch a graph of G(x). Mark the point(1,G(1)) on the graph. Sketch a

    Partial Derivatives Problems

    Please see the attached file for the full problem description. 1. (a) If f (r, theta) = r^n cosntheta show that (see attached file) (b) If u = y^3 - 3x^2y prove that (see attached file).

    Going from First to Second Derivative

    I have a first derivative and a second derivative, how do you get from the first to the second, I can't solve it. Please see the attached file for the fully formatted problems. M'(t) = pe^t/(1 - t^tq)^2 M''(t) = pe^t(1 + qe^t)/(1 - (e^t)q)^3

    Working with orthogonal trajectories

    (a)Find the orthogonal trajectories of the family of curves defined by 2cy + x2 = c2, c>0 State the differential equation of the orthogonal family, and show your steps in obtaining a solution. (b) On the same set of "square" axes, plot at least five members of each of the given family and your family of orthogonal soluti

    Rate of Change of Temperature at a Given Point

    Suppose that the temperature at the point (x, y, z) in space (in degrees Celsius) is given by the formula: W= 100 - x^2 - y^2 - z^2. The units in space are meters. (a) Find the rate of change of temperature at the point P(3, -4, 5) in the direction of the vector v=3i - 4j + 12k. (b) In what direction does W increase most rapidly

    Directional derivative functions

    Find the directional derivative of f at P in the direction of v; that is find D_u f(P), where u=v/{v}: f(x, y, z)= ln(1 + x^2 +y^2 - z^2) ; P(1, -1, 1), v=2i - 2j -3k

    Chain Rule Partial Derivative

    Write chain rule formulas giving the partial derivative of the dependent variable p with respect to each independent variable: p=f(x, y, z); x=x(u, v), y=y(u, v), z=z(u, v)

    Derivative of a function problem

    Let f be the function whose graph goes through point (3,6) and whose derivative is given by f'(x) = (1+e^(x))/(x^2) a) write the equation of the line tangent to the graph of f at x=3 and use it to approximate f(3.1) b) Use Euler's method, starting at x=3 with a step size of .05 to approximate f(3.1). Use f'' to explain wh

    Partial derivative question

    I am taking a course by distance, and my professor provided an example of how to create a Hessian matrix using partial derivatives. He gave another example that just had the solution for us to try on our own. I think that I am somehow not taking the second order partial derivative right. The attached file has the professor

    Differentiating Equations Velocity and Acceleration

    This equation represents displacement of a body(s)against time(t) where (u) is the initial velocity and (a) is the acceleration Differentiate this equation for instantaneous velocity and work out the acceleration of a body from rest to the final velocity if t= 24 secs. and v= 4.01m/s

    Evaluating Functions using Derivatives

    Let f be a function that is differentiable for all real numbers. The table gives the values of f and its derivative f' for selected points x in the closed interval -1.5<or equal x< or equal 1.5. The second derivative of f has the property that f''(x)>0 for -1.5<or equalx<or equal 1.5 Find a positive real number r having the

    Derivatives: Minimizing Time and Distance

    A lighthouse is 30 miles off a straight coast and a town is located 25 miles down the sea coast. Supplies are to be moved from the town to the lighthouse on a regular basis and at a minimum time. If the supplies can be moved at a rate of 4 miles per hour on water and 40 miles per hour on land, how far from the town should the do

    Partial derivatives

    The heat transfer in a semi-infinite rod can be described by the following PARTIAL differential equation: &#8706;u/&#8706;t = (c^2)&#8706;^2u/&#8706;x^2 where t is the time, x distance from the beginning of the rod and c is the material constant. Function u(t,x) represents the temperature at the given time t and p

    Differentiation

    Prove that if f(x) = x^alpha, where alpha = 1/n for some n in N (the natural numbers), then y = f(x) is differentiable and f'(x) = alpha x^(alpha - 1). Progress I have made so far: I have managed to prove, (x^n)' = n x^(n - 1) for n in N and x in R both from the definition of differentiation involving the limit and the binomial

    Maclaurin Series Hyperbolic Tangent

    Given The Maclaurin series for the inverse hyperbolic tangent is of the form x+x^3/3+x^5/5...x^7/7. Show that this is true through the third derivative term.

    Calculus : Partitions and Riemann Integral

    Let f be the function: F(x) 1/4 x=o, x 0<x<1 3/4 x=1 Using standard partition Pn (0,1) where n greater or equal to 4 L(f, Pn) = 2n(squared) -3n+4 all divided by 4n(squared) U(f,Pn) = 2n(squared) +3n+4 all divided by 4n(squared) and deduce that f is intergrable on (0,1) and evaluate (intergral sign with 1 at t

    Working with derivatives and tangents

    1.) Find the derivative of the function: a.) f(x) = x + 1/x^2 b.) f(x) = (2/3rd root of x) + 3 cos x 2.) Find equation of tangent line to the graph of f at the indicated point: a.) y = (x^2 + 2x)(x + 1) ; (1,6)

    Calculate the derivatives of wave equations

    The equation for a wave moving along a straight wire is: (1) y= 0.5 sin (6 x - 4t) To look at the motion of the crest, let y = ym= 0.5 m, thus obtaining an equation with only two variables, namely x and t. a. For y= 0.5, solve for x to get (2) x(t) then take a (partial) derivative of x(t) to get the rate of change of