Share
Explore BrainMass

# Rational Exponents

1. Evaluate if possible: (-49)^1/2
A. 49
B. 7
C. 7 or -7
D. not a real number

2. Evaluate if possible: (27)^2/3
A. -9
B. 3
C. 9
D. not a real number

3. Simplify and write the expression with positive exponents. All letters represent positive numbers. (n^1/3)^-6
A. 1/n^2/3
B. 1/n^2
C. n^2
D. cannot be simplified

4. Perform the indicated operations and simplify your result. Assume all variables are positive. &#8730;8u^2 - &#8730;2u^2
A. 3u&#8730;2u^2
B. 3u&#8730;2
C. u^2&#8730;2
D. u&#8730;2

5. Perform the indicated operations. (&#8730;7 + &#8730;11)^2
A. 170 + 2&#8730;77
B. 18 + &#8730;77
C. 18 + 2&#8730;77
D. 18

6. Rationalize the denominator. 9n+p divided by 9+&#8730;5
A. 9n + p divided by 76
B. 81n + 9p +9n&#8730;5 + p&#8730;5 divided by 86
C. 81n + 9p - 9n&#8730;5 - p&#8730;5 divided by 86
D. 81n + 9p - 9n&#8730;5 -p&#8730;5 divided by 76

7. Solve: &#8730;x-9 = 3
A. x = 15
B. x = 0
C. x = 18
D. no real number solution

8. Solve: 3&#8730;7x + 1 = 3&#8730;2x + 31
A. x = 6
B. x = -6
C. 28/5
D. no real number solution

9. Solve: &#8730;x + 24 - &#8730;x = -6
A. x = -5
B. x = 1
C. x = 2
D. no real number solutions

10. Simplify: i^43
A. 1
B. -1
C. i
D. -i

#### Solution Summary

Expressions with rational exponents are evaluated.

\$2.19