Share
Explore BrainMass

Compact Subset of R^m with Convergent Sequences

Let A be a proper subset of R^m. A is compact, x in A, (x_n) sequence in A, every convergent subsequence of (x_n) converges to x.

(a) Prove the sequence (x_n) converges.

Is this because all the subsequences converge to the same limit?

(b) If A is not compact, show that (a) is not necessarily true.

If A is not compact, doesn't it imply that (x_n) doesn't necessarily have all subsequences as convergent?

Can you help?

Solution Preview

(a) Prove the sequence (x_n) converges. Is this because all the subsequences converge to the same limit?

Proof:
Since A is compact in R^m, then A is bounded and closed. (x_n) is a sequence in A, then we know every bounded sequence must have a convergent ...

Solution Summary

A compact subset of R^m with Convergent Sequences is investigated in the following posting. The solution is detailed and well presented. Step by step proofs are given. The response was given a rating of "5/5" by the student who originally posted the question.

\$2.19