# Extreme value theorem

Not what you're looking for?

(Extreme Value Theorem) prove if f:K->R is continuous on a compact set K subset or equal to R, then f attains a maximum and minimum value.In other words there exists Xo,X1 belong to K such that f(Xo)<=f(X)<=f(X1) for all X belong to K.

##### Purchase this Solution

##### Solution Summary

This is a proof regarding the extreme value theorem (maximum and minimum).

##### Solution Preview

To prove that f attains maximum and minimum, we need the following lemmas.

Lemma 1: f:K->R continuous, K compact in R, F(K) is compact.

Lemma 2: K subset of R is ...

##### Purchase this Solution

##### Free BrainMass Quizzes

##### Probability Quiz

Some questions on probability

##### Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

##### Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

##### Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

##### Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.