Purchase Solution

Convergent Sequences and Subsequences, Compact Set and Accumulation Points

Not what you're looking for?

Ask Custom Question

Prove that a set A, a subset of the real numbers, is compact if and only if every sequence {an} where an is in A for all n, has a convergent subsequence converging to a point in A.

For the forward direction, I know that a compact set is closed and bounded, thus every sequence in A is bounded, and so has a convergent subsequence. Also, since A is closed, it contains all of it's accumulation points, and a point s is an accumulation point iff there exists some sequence {bn} in A a such that bn is not = s and {bn} --> s. Is this enough for this proof?

I also need help proving the other direction. Any help will be greatly appreciated. Thanks.

Purchase this Solution

Solution Summary

Convergent Sequences and Subsequences, Compact Set and Accumulation Points are investigated.

Solution Preview

"=>" If A is compact, then A is closed and bounded. So every sequence {a_n} in A is bounded and thus it has a convergent subsequence. Since A is closed, then every accumuation point of A is in A. So the limit of the convergent subsequence is in A. We are done.
"<=" If every sequence {a_n} in A ...

Purchase this Solution

Free BrainMass Quizzes
Probability Quiz

Some questions on probability

Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.