Purchase Solution

# Calculating Time from the Number of Loops

Not what you're looking for?

How much time does the following algorithm require as a function of n?
Express your answer in theta notation in the simplest form. Consider each individual instruction (including loop control) as elementary.

l = 0
for i = 1 to n
for j = 1 to n^2
for k = 1 to n^3
l = l + 1

##### Solution Summary

The number of loops in an algorithm is used to express time required. The solution is detailed and well presented.

##### Solution Preview

Solution. We need to find the number of elementary operations.
...

Solution provided by:
###### Education
• BSc , Wuhan Univ. China
• MA, Shandong Univ.
###### Recent Feedback
• "Your solution, looks excellent. I recognize things from previous chapters. I have seen the standard deviation formula you used to get 5.154. I do understand the Central Limit Theorem needs the sample size (n) to be greater than 30, we have 100. I do understand the sample mean(s) of the population will follow a normal distribution, and that CLT states the sample mean of population is the population (mean), we have 143.74. But when and WHY do we use the standard deviation formula where you got 5.154. WHEN & Why use standard deviation of the sample mean. I don't understand, why don't we simply use the "100" I understand that standard deviation is the square root of variance. I do understand that the variance is the square of the differences of each sample data value minus the mean. But somehow, why not use 100, why use standard deviation of sample mean? Please help explain."
• "excellent work"
• "Thank you so much for all of your help!!! I will be posting another assignment. Please let me know (once posted), if the credits I'm offering is enough or you ! Thanks again!"
• "Thank you"
• "Thank you very much for your valuable time and assistance!"

##### Probability Quiz

Some questions on probability

##### Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.