Explore BrainMass
Share

Maximum Work from Three Bodies at Different Temperatures

This content was STOLEN from BrainMass.com - View the original, and get the already-completed solution here!

Each of three bodies has a temperature-independent heat capacity C. The three bodies have initial temperatures of T1, T2, and T3 . What is the maximum amount of work that can be extracted leaving the three bodies at a common final temperature?

© BrainMass Inc. brainmass.com October 24, 2018, 10:07 pm ad1c9bdddf
https://brainmass.com/physics/internal-energy/149010

Solution Preview

I'll assume that C is the total heat capacity. If the heat capacity is a specific heat capacity (per unit mass, per mole, etc.), then multiply it by the mass, the amount of moles etc. of the bodies.

In this problem we have to deal with two processes: Heat flow and performed work. The heat flow is entirely between the bodies and leaves the total internal energy of the three bodies together unchanged. The performed work by the system is energy that leaves the system of the three bodies. If we denote by U_i the total internal energy at the beginning and by U_f the final total internal energy, then we have:

U_f = U_i - W (1)

where W is the work ...

Solution Summary

We derive a formula for the maximum work that can be performed by a system of three bodies with equal heat capacities at different initial temperatures. The formula can be easily generalized for the case of an arbitrary number of bodies with unequal heat capacities.

$2.19
See Also This Related BrainMass Solution

Entropy Change and Maximum Work Problem

Consider a thermally isolated system that consists of a body at temperature T1 and a large reservoir at temperature T2 > T1. The reservoir is sufficiently large so that its temperature does not change. The body has constant pressure heat capacity of Cp that does not vary with temperature.

Please explain to me how to obtain the change in entropy of the universe of this system.

View Full Posting Details