Constructing a polynomial
Not what you're looking for?
1
(a) Consider the function values...
Consider a polynomial P(x) of least degree (the osculating polynomial) through the points xi=x0+i*h, i.e. polynomial that satisfies
P(x0)=f0, P(x1)=f1, P'(x1)=f'(x1), P(x2)=f2
(b) Prove that df(x1)/dx = dP(x1)/dx for any smooth function f(x)
(c) Construct the polynomial P(x) for the function f(x)=sin(x) and x0=0, x1=pi/2, x2=pi
Please see attached for Full Question.
Purchase this Solution
Solution Summary
This shows how to construct a polynomial for a given situation.
Solution Preview
please check the file Q38306 Polynomial.doc
UPDATE: Question from Student:
For the first part of the question, would the answer simply be all those equations? There is no one way of ...
Purchase this Solution
Free BrainMass Quizzes
Exponential Expressions
In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.
Know Your Linear Equations
Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.
Geometry - Real Life Application Problems
Understanding of how geometry applies to in real-world contexts
Solving quadratic inequalities
This quiz test you on how well you are familiar with solving quadratic inequalities.
Probability Quiz
Some questions on probability