Purchase Solution

Periodic Functions via Convolution

Not what you're looking for?

Ask Custom Question

Please see the attached file for the fully formatted problems.

"Periodic Function via Convolution"
Consider the periodic train of Dirac delta "functions"
f(x) =....
with real period ....
(a) FIND and DESCRIBE its Fourier transform F(k). What happens to F if c gets doubled?
(b) Let p(x + c) = p(x) be a periodic function.
Prove or disprove: p(x) is the convolution (i.e. f * g (x) E f(x ? t)g(t) dt) of a periodic train of Dirac delta functions with a non-periodic function, say g(x) in L2 (?co, oo). What is g(x)?
(c) Find the Fourier transform
5(k) FpJ(k) = * f ep(x) dx
of p(x) in terms of the Fourier transform (k) of that nonperiodic function. Relate your answer to the Fourier series coefficients of the periodic function p(x)

Attachments
Purchase this Solution

Solution Summary

A periodic train of Dirac functions are investigated via convolution. The solution is detailed and well presented.

Purchase this Solution


Free BrainMass Quizzes
Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

Probability Quiz

Some questions on probability

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.