Purchase Solution

Compact metric space and contraction maps

Not what you're looking for?

Ask Custom Question

Here is the question.

Let (X,d) be a compact metric space, and let Con(X) denote the set of contraction maps on X. We shall define the distance between two maps f,g which belongs to Con(X) as follows :

d_c (f,g) = sup d ( f(x) , g(x) ) for any x that belongs to X.

a) Show that

d(y_f,y_g) <= d_c(f,g)/(1-min(cf,cg)) (where <= mean smaller or equal)

Where y_f and y_g are the fixed points of f and g, respectively, and cf and cg are their contraction factors.

b) What property regarding fixed points and contraction maps can be deduced from this result ?

Purchase this Solution

Solution Summary

This provides a proof regarding contraction maps and distance, as well as a deduction regarding fixed points and contraction maps.

Solution Preview

Let be a compact metric space and let be contraction maps; that is there exist constants such that for all .
Define .
Let be any fixed points of the maps f and g respectively. Using the triangle ...

Purchase this Solution

Free BrainMass Quizzes
Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

Probability Quiz

Some questions on probability

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.