Purchase Solution

Real analysis

Not what you're looking for?

Ask Custom Question

Let xn(smaller n)>=0 for all n belong to N
a) if (xn)-->0, show that(sqrt[xn])-->0
b)if (xn)-->x,show that(sqrt[xn])-->x

Purchase this Solution

Solution Summary

These are proofs regarding limits.

Solution Preview

(a) proof:
Since x_n->0 as n->inf, for any e>0, we can find N>0, such that for all n>N, we have |x_n|<e^2. So |sqrt(x_n)|<e. This implies sqrt(x_n)->0 as n->inf.

(b) ...

Purchase this Solution

Free BrainMass Quizzes
Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

Probability Quiz

Some questions on probability

Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.