# Bayes Theorem - Decision Analysis - Type I & Type II errors

Not what you're looking for?

See the attached file.

Need step-by-step instructions on how to solve the following example problems:

Decision Analysis

The quality control manager in a chip manufacturing plant has to select one of two available quality control methods. The estimated error rates for the methods are presented below: (see attachment)

Type I error probability is defined as the conditional probability of rejecting a good lot. Type II error probability is defined as the conditional probability of accepting a poor quality lot.

Historical data suggests that four percent of the lots produced in the plant are of poor quality.

a. Based on the information specified above, what is the conditional probability that:

(i) A lot rejected by using method A is actually good?

(ii) A lot accepted by using method A is actually bad?

(iii) A lot rejected by using method B is actually good?

(iv) A lot accepted by using method B is actually bad?

b. The organization incurs a cost of $4,000 when it rejects a good lot. It is further estimated that the cost of accepting a poor lot is $ 10,000 (due to liabilities). If the objective is to minimize the expected cost of errors, which quality control method should the manager adopt? Why?

c. For the current manufacturing process, the a-priori probability that a lot is poor is 0.04. Under what ranges of this probability should the manager to prefer method A? Assume that all other parameters remain as specified in (a) and (b).

d. Under what ranges for the cost of accepting a poor lot should the manager to prefer method A? Assume that all other parameters remain as specified in (a) and (b).

##### Purchase this Solution

##### Solution Summary

The solution assists with computing Type I and Type II errors, Conditional Probability formulas and Bayes' theorem.

##### Solution Preview

See attached.

1. We have:

P(Type 1 error) = P(Reject Ho/ Ho is True)

P(Type 2 error) = P( Accept Ho/ Ho False)

Now, from what is given, we conclude:

For method A

P(Reject Ho/Ho True) = .04

P(Accept Ho/Ho is false)= .02

For method B

P(Reject Ho/Ho True) = .02

P(Accept Ho/Ho is false)= .02

We will make the following notations:

B: Event lot is bad quality (Ho is ...

###### Education

- BSc, University of Bucharest
- MSc, Ovidius
- MSc, Stony Brook
- PhD (IP), Stony Brook

###### Recent Feedback

- "Thank you "
- "Thank You Chris this draft really helped me understand correlation."
- "Thanks for the prompt return. Going into the last meeting tonight before submission. "
- "Thank you for your promptness and great work. This will serve as a great guideline to assist with the completion of our project."
- "Thanks for the product. It is an excellent guideline for the group. "

##### Purchase this Solution

##### Free BrainMass Quizzes

##### Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

##### Probability Quiz

Some questions on probability

##### Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

##### Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

##### Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.