Explore BrainMass

Explore BrainMass

    Vector Spaces, Basis and Quotient Spaces

    This content was COPIED from BrainMass.com - View the original, and get the already-completed solution here!

    See the attached file.
    1. Let and be vector spaces over and let be a subspace of

    Show that for all is a subspace of
    and this subspace is isomorphic to .

    Deduce that if and are finite dimensional, then
    dim = (dim - dim )dim

    2. Let be a linear operator on a finite dimensional vector space
    Prove that there is a basis of such that is a
    basis of im and is a basis of ker

    3. Let and be finite dimensional vector space over and let
    (a) Prove that ker ker if and only if for some

    (b) Prove that there exists such that and

    Please see the attached file for the fully formatted problems.

    © BrainMass Inc. brainmass.com October 9, 2019, 6:46 pm ad1c9bdddf


    Solution Summary

    Vector spaces, basis and quotient spaces are investigated in the solution. The solution is detailed and well presented.