Purchase Solution

Group Homomorphism and Abelian Groups

Not what you're looking for?

Ask Custom Question

Let phi: G ---> H be a group homomorphism. Show that phi[G] is abelian if and only if for all x, y in G, we have xyx^(-1)y^(-1) in ker(phi).

Proving (=>) seems almost obvious since if it is abelian that means xyx^(-1)y^(-1) = xx^(-1)yy^(-1)=ee which is in the kernel. Please show how to do the reverse (<=) and show that phi is abelian.

Purchase this Solution

Solution Summary

Group homomorphism and abelian groups are investigated in the solution.

Solution Preview

Proof:
"=>": If phi(G) is abelian, then ...

Purchase this Solution


Free BrainMass Quizzes
Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.