Purchase Solution

# Homomorphism of a Group and Kernel of the Homomorphism

Not what you're looking for?

Modern Algebra
Group Theory (LIV)
Homomorphism of a Group
Kernel of the Homomorphism

Verify if the mapping defined is a homomorphism and in that case in which it is homomorphism, determine the Kernel:

G is any abelian group and ¯G = G, phi(x) = x^5 all x belongs to G.

The fully formatted problem is in the attached file.

##### Solution Summary

Homorphisms and kernels are investigated. The solution is detailed and well presented.

Solution provided by:
###### Education
• BSc, Manipur University
• MSc, Kanpur University
###### Recent Feedback
• "Thanks this really helped."
• "Sorry for the delay, I was unable to be online during the holiday. The post is very helpful."
• "Very nice thank you"
• "Thank you a million!!! Would happen to understand any of the other tensor problems i have posted???"
• "You are awesome. Thank you"

##### Free BrainMass Quizzes

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

##### Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.