Purchase Solution

# Topological Surfaces

Not what you're looking for?

1) The definitions of surface (in terms of gluing panels) and what it means for two surfaces to be topologically equivalent.

2) A description of the three features of surfaces that characterize them in terms of their topology.

3) Three examples of pairs of surfaces that agree on two of the features but differ on the third one. For example, an annulus and a torus are both ______ have ______ equal to 0, but differ in ______.

4) An explanation of whether a T-shirt and pair of sweat pants (no zipper) are topologically equivalent.

##### Solution Summary

Topological surfaces: definitions, examples of features of surfaces. Proving that a pair of sweat pants and a T-shirt are not topological equivalent.

##### Solution Preview

Hello,

1)
A surface is a two dimensional object. This time our bug can crawl along the surface in two independent directions at most points. In principle, a surface can be built up by gluing little square panels together. The squares might have to be very little and you may need lots of them to build a surface that has no visible corners, but from a topological point of view corners can be smoothed out. Two surfaces S1 and S2 are equivalent if there is a "nice" bijection between ...

Solution provided by:
###### Education
• BSc, University of Bucharest
• MSc, Ovidius
• MSc, Stony Brook
• PhD (IP), Stony Brook
###### Recent Feedback
• "Thank you "
• "Thank You Chris this draft really helped me understand correlation."
• "Thanks for the prompt return. Going into the last meeting tonight before submission. "
• "Thank you for your promptness and great work. This will serve as a great guideline to assist with the completion of our project."
• "Thanks for the product. It is an excellent guideline for the group. "

##### Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

##### Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

##### Probability Quiz

Some questions on probability