# Countable and Normal

Not what you're looking for?

A) Reals with the "usual topology." Is there a way to prove this space is normal other than just saying it is normal because every metric space is normal?

b) Reals with the "K-topology:" basis consists of open intervals (a,b)and sets of form (a,b) - K where K = {1, 1/2, 1/3, ... } Why connected? Why 2nd countable?

##### Purchase this Solution

##### Solution Summary

This shows how to create statements regarding metric spaces and being connected, second countable, and normal.

##### Solution Preview

Let X be the space of reals.

a) Proof:

Suppose A and B are two nonintersected closed set in X. For any x in X, we define d(x,A) as the distance from x to A since X is a metric space and the distance is well-defined. Now if x is in A, then d(x,A)=0. If x is not in A, then d(x,A)>0. We can similarly define d(x,B), the distance from x to B. So d(x,A)+d(x,B)>0 since A and B have no intersections. We also know d(x,A) and d(x,B) are continous functions.

Now we define f(x)=[d(x,A)-d(x,B)]/[d(x,A)+d(x,B)], then we know f(x) is continous. Moreover, f(A)={-1} and f(B)={1}. So f(X) is in [-1,1]. Next we define g(x)=[f(x)+1]/2. Then g(A)={0}, g(B)={1}. g is continous. Therefore, by the Urysohn Lemma, X satisfies T4 ...

##### Purchase this Solution

##### Free BrainMass Quizzes

##### Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

##### Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

##### Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

##### Graphs and Functions

This quiz helps you easily identify a function and test your understanding of ranges, domains , function inverses and transformations.

##### Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.