Purchase Solution

Working with Topological Spaces

Not what you're looking for?

Ask Custom Question

Which of the following topological spaces is normal?

a) Reals with the "usual topology."
b) Reals with the "finite complement topology:" U open in X if U - X is finite or is all of X.
c) Reals with the "countable complement topology:" U open in X if X - U is countable or is all of X.
d) Reals with the "lower limit topology:" basis half-closed intervals [a,b)
e) Reals with the "upper limit topology:" basis half-closed intervals (a,b]
f) Reals with the "K-topology:" basis consists of open intervals (a,b) and sets of form (a,b) - K where K = {1, 1/2, 1/3, ... }

Purchase this Solution

Solution Summary

This solution discusses in about 290 words, six different problems and uses proof to illustrate which display normal topological spaces.

Solution Preview

We know, a normal topological space is a T4 space. For any closed non-intersection sets A,B in X, there exists open neighborhoods of U(A) and U(B) such that U(A) intersects U(B) is empty.

In the following problems, I think you mean X represents the set of reals.
a) Yes. Any metric space is normal.

b) No. Suppose A={1}, B={2}, by definition, X-A and X-B are open sets since ...

Purchase this Solution


Free BrainMass Quizzes
Exponential Expressions

In this quiz, you will have a chance to practice basic terminology of exponential expressions and how to evaluate them.

Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

Probability Quiz

Some questions on probability